

Contents

	1. Introduction
	1.1. Publications

	1.2. Citation

	1.3. Indices and tables

	2. Getting Started
	2.1. Join the Corundum community

	2.2. Obtaining the source code

	2.3. Setting up the FPGA development environment

	2.4. Running tests

	2.5. Setting up the FPGA build environment (Vivado)

	2.6. Building the FPGA configuration

	2.7. Building the driver

	2.8. Building the userspace tools

	2.9. Setting up the PetaLinux build environment

	2.10. Loading the FPGA design

	2.11. Loading the kernel module

	2.12. Testing the design

	3. Debugging
	3.1. The server rebooted when configuring the FPGA

	3.2. The link is down

	3.3. Ping and iperf don’t work

	3.4. The device loses its IP address

	4. Performance Tuning

	5. Porting
	5.1. Preparation

	5.2. Porting Corundum
	5.2.1. Board ID

	5.2.2. FPGA ID

	5.2.3. PCIe interface

	5.2.4. Ethernet interfaces

	5.2.5. I2C interfaces

	5.2.6. Flash access

	5.2.7. Module control pins

	6. Persistent MAC Addresses
	6.1. Programming I2C EEPROM via kernel module

	7. Operations
	7.1. Packet transmission

	7.2. Packet reception

	8. Modules
	8.1. Overview
	8.1.1. High-level overview

	8.2. cpl_queue_manager

	8.3. cpl_write

	8.4. desc_fetch

	8.5. mqnic_app_block
	8.5.1. Parameters

	8.5.2. Ports

	8.6. mqnic_core
	8.6.1. Parameters

	8.6.2. Ports

	8.7. mqnic_core_axi
	8.7.1. Parameters

	8.7.2. Ports

	8.8. mqnic_core_pcie
	8.8.1. Parameters

	8.8.2. Ports

	8.9. mqnic_core_pcie_s10
	8.9.1. Parameters

	8.9.2. Ports

	8.10. mqnic_core_pcie_us
	8.10.1. Parameters

	8.10.2. Ports

	8.11. mqnic_egress

	8.12. mqnic_ingress

	8.13. mqnic_interface

	8.14. mqnic_interface_rx

	8.15. mqnic_interface_tx

	8.16. mqnic_l2_egress
	8.16.1. Parameters

	8.16.2. Ports

	8.17. mqnic_l2_ingress
	8.17.1. Parameters

	8.17.2. Ports

	8.18. mqnic_ptp
	8.18.1. Parameters

	8.18.2. Ports

	8.19. mqnic_ptp_clock
	8.19.1. Parameters

	8.19.2. Ports

	8.20. mqnic_ptp_perout
	8.20.1. Parameters

	8.20.2. Ports

	8.21. mqnic_tx_scheduler_block
	8.21.1. Parameters

	8.21.2. Ports

	8.22. queue_manager
	8.22.1. Operation

	8.23. rx_checksum

	8.24. rx_engine

	8.25. rx_hash

	8.26. tx_checksum

	8.27. tx_engine

	8.28. tx_scheduler_rr
	8.28.1. Operation

	8.28.2. Parameters

	8.28.3. Ports

	9. Register blocks
	9.1. App info register block

	9.2. Alveo BMC register block

	9.3. Gecko BMC register block

	9.4. Clock info register block

	9.5. Completion queue manager register block
	9.5.1. Completion queue manager CSRs

	9.5.2. Completion queue manager commands

	9.6. DRP register block

	9.7. Event queue manager register block
	9.7.1. Event queue manager CSRs

	9.7.2. Event queue manager commands

	9.8. BPI flash register block

	9.9. SPI flash register block

	9.10. Firmware ID register block

	9.11. GPIO register block

	9.12. I2C register block

	9.13. Interface register block

	9.14. Interface control register block

	9.15. Null register block

	9.16. PTP hardware clock register block

	9.17. PTP period output register block

	9.18. Port register block

	9.19. Port control register block

	9.20. Receive queue manager register block
	9.20.1. Queue manager CSRs

	9.20.2. Queue manager commands

	9.21. Transmit queue manager register block
	9.21.1. Queue manager CSRs

	9.21.2. Queue manager commands

	9.22. RX queue map register block

	9.23. Scheduler block register block

	9.24. TDMA scheduler controller register block
	9.24.1. TDMA scheduler controller CSRs

	9.25. Round-robin scheduler register block
	9.25.1. Round-robin scheduler CSRs

	9.26. TDMA scheduler register block
	9.26.1. TDMA timing parameters

	10. Device list
	10.1. PCIe

	10.2. SoC

	11. Glossary

1. Introduction

Corundum is an open-source, high-performance FPGA-based NIC and platform for in-network compute. Features include a high performance datapath, 10G/25G/100G Ethernet, PCI express gen 3, a custom, high performance, tightly-integrated PCIe DMA engine, many (1000+) transmit, receive, completion, and event queues, scatter/gather DMA, MSI, multiple interfaces, multiple ports per interface, per-port transmit scheduling including high precision TDMA, flow hashing, RSS, checksum offloading, and native IEEE 1588 PTP timestamping. A Linux driver is included that integrates with the Linux networking stack. Development and debugging is facilitated by an extensive simulation framework that covers the entire system from a simulation model of the driver and PCI express interface on one side to the Ethernet interfaces on the other side.

Corundum has several unique architectural features. First, transmit, receive, completion, and event queue states are stored efficiently in block RAM or ultra RAM, enabling support for thousands of individually-controllable queues. These queues are associated with interfaces, and each interface can have multiple ports, each with its own independent scheduler. This enables extremely fine-grained control over packet transmission. Coupled with PTP time synchronization, this enables high precision TDMA.

Corundum also provides an application section for implementing custom logic. The application section has a dedicated PCIe BAR for control and a number of interfaces that provide access to the core datapath and DMA infrastructure.

The latest source code is available from the Corundum GitHub repository [https://github.com/corundum/corundum]. To stay up to date with the latest developments and get support, consider joining the mailing list [https://groups.google.com/d/forum/corundum-nic] and Zulip [https://corundum.zulipchat.com/].

Corundum currently supports devices from both Xilinx and Intel, on boards from several different manufacturers. Designs are included for the following FPGA boards; see Device list for more details:

	Alpha Data ADM-PCIE-9V3 (Xilinx Virtex UltraScale+ XCVU3P)

	Dini Group DNPCIe_40G_KU_LL_2QSFP (Xilinx Kintex UltraScale XCKU040)

	Cisco Nexus K35-S (Xilinx Kintex UltraScale XCKU035)

	Cisco Nexus K3P-S (Xilinx Kintex UltraScale+ XCKU3P)

	Cisco Nexus K3P-Q (Xilinx Kintex UltraScale+ XCKU3P)

	Silicom fb2CG@KU15P (Xilinx Kintex UltraScale+ XCKU15P)

	NetFPGA SUME (Xilinx Virtex 7 XC7V690T)

	BittWare 250-SoC (Xilinx Zynq UltraScale+ XCZU19EG)

	BittWare XUP-P3R (Xilinx Virtex UltraScale+ XCVU9P)

	Intel Stratix 10 MX dev kit (Intel Stratix 10 MX 2100)

	Intel Stratix 10 DX dev kit (Intel Stratix 10 DX 2800)

	Intel Agilex F dev kit (Intel Agilex F 014)

	Terasic DE10-Agilex (Intel Agilex F 014)

	Xilinx Alveo U50 (Xilinx Virtex UltraScale+ XCU50)

	Xilinx Alveo U200 (Xilinx Virtex UltraScale+ XCU200)

	Xilinx Alveo U250 (Xilinx Virtex UltraScale+ XCU250)

	Xilinx Alveo U280 (Xilinx Virtex UltraScale+ XCU280)

	Xilinx Kria KR260 (Xilinx Zynq UltraScale+ XCK26)

	Xilinx VCU108 (Xilinx Virtex UltraScale XCVU095)

	Xilinx VCU118 (Xilinx Virtex UltraScale+ XCVU9P)

	Xilinx VCU1525 (Xilinx Virtex UltraScale+ XCVU9P)

	Xilinx ZCU102 (Xilinx Zynq UltraScale+ XCZU9EG)

	Xilinx ZCU106 (Xilinx Zynq UltraScale+ XCZU7EV)

1.1. Publications

	
	Forencich, A. C. Snoeren, G. Porter, G. Papen, Corundum: An Open-Source 100-Gbps NIC, in FCCM’20. (FCCM Paper [https://www.cse.ucsd.edu/~snoeren/papers/corundum-fccm20.pdf], FCCM Presentation [https://www.fccm.org/past/2020/forums/topic/corundum-an-open-source-100-gbps-nic/])

	
	
	Forencich, System-Level Considerations for Optical Switching in Data Center Networks. (Thesis [https://escholarship.org/uc/item/3mc9070t])

1.2. Citation

If you use Corundum in your project, please cite one of the following papers
and/or link to the project on GitHub:

@inproceedings{forencich2020fccm,
 author = {Alex Forencich and Alex C. Snoeren and George Porter and George Papen},
 title = {Corundum: An Open-Source {100-Gbps} {NIC}},
 booktitle = {28th IEEE International Symposium on Field-Programmable Custom Computing Machines},
 year = {2020},
}

@phdthesis{forencich2020thesis,
 author = {John Alexander Forencich},
 title = {System-Level Considerations for Optical Switching in Data Center Networks},
 school = {UC San Diego},
 year = {2020},
 url = {https://escholarship.org/uc/item/3mc9070t},
}

1.3. Indices and tables

	Index

	Module Index

	Search Page

2. Getting Started

2.1. Join the Corundum community

To stay up to date with the latest developments and get support, consider joining the mailing list [https://groups.google.com/d/forum/corundum-nic] and Zulip [https://corundum.zulipchat.com/].

2.2. Obtaining the source code

The main upstream repository for Corundum [https://github.com/corundum/corundum/] is located on GitHub [https://github.com/]. There are two main ways to download the source code - downloading an archive, or cloning with git.

To clone via HTTPS, run:

$ git clone https://github.com/corundum/corundum.git

To clone via SSH, run:

$ git clone git@github.com:corundum/corundum.git

Alternatively, download a zip file:

$ wget https://github.com/corundum/corundum/archive/refs/heads/master.zip
$ unzip master.zip

Or a gzipped tar archive file:

$ wget https://github.com/corundum/corundum/archive/refs/heads/master.tar.gz
$ tar xvf master.tar.gz

There is also a mirror of the repository [https://gitee.com/alexforencich/corundum/] on gitee [https://gitee.com/], here are the equivalent commands:

$ git clone https://gitee.com/alexforencich/corundum.git
$ git clone git@gitee.com:alexforencich/corundum.git
$ wget https://gitee.com/alexforencich/corundum/repository/archive/master.zip
$ wget https://gitee.com/alexforencich/corundum/repository/archive/master.tar.gz

2.3. Setting up the FPGA development environment

Corundum currently uses Icarus Verilog [http://iverilog.icarus.com/] and cocotb [https://github.com/cocotb/cocotb] for simulation. Linux is the recommended operating system for a development environment due to the use of symlinks (which can cause problems on Windows as they are not supported by windows filesystems), however WSL may also work well.

The required system packages are:

	Python 3 (python or python3, depending on distribution)

	Icarus Verilog (iverilog)

	GTKWave (gtkwave)

The required python packages are:

	cocotb

	cocotb-bus

	cocotb-test

	cocotbext-axi

	cocotbext-eth

	cocotbext-pcie

	pytest

	scapy

Recommended additional python packages:

	tox (to run pytest inside a python virtual environment)

	pytest-xdist (to run tests in parallel with pytest -n auto)

	pytest-sugar (makes pytest output a bit nicer)

It is recommended to install the required system packages via the system package manager (apt, yum, pacman, etc.) and then install the required Python packages as user packages via pip (or pip3, depending on distribution).

2.4. Running tests

Once the packages are installed, you should be able to run the tests. There are several ways to do this.

First, all tests can be run by runing tox in the repo root. In this case, tox will set up a python virtual environment and install all python dependencies inside the virtual environment. Additionally, tox will run pytest as pytest -n auto so it will run tests in parallel on multiple CPUs.

$ cd /path/to/corundum/
$ tox
py3 create: /home/alex/Projects/corundum/.tox/py3
py3 installdeps: pytest == 6.2.5, pytest-xdist == 2.4.0, pytest-split == 0.4.0, cocotb == 1.6.1, cocotb-test == 0.2.1, cocotbext-axi == 0.1.18, cocotbext-eth == 0.1.18, cocotbext-pcie == 0.1.20, scapy == 2.4.5
py3 installed: attrs==21.4.0,cocotb==1.6.1,cocotb-bus==0.2.1,cocotb-test==0.2.1,cocotbext-axi==0.1.18,cocotbext-eth==0.1.18,cocotbext-pcie==0.1.20,execnet==1.9.0,iniconfig==1.1.1,packaging==21.3,pluggy==1.0.0,py==1.11.0,pyparsing==3.0.7,pytest==6.2.5,pytest-forked==1.4.0,pytest-split==0.4.0,pytest-xdist==2.4.0,scapy==2.4.5,toml==0.10.2
py3 run-test-pre: PYTHONHASHSEED='4023917175'
py3 run-test: commands[0] | pytest -n auto
============================= test session starts ==============================
platform linux -- Python 3.9.7, pytest-6.2.5, py-1.11.0, pluggy-1.0.0
cachedir: .tox/py3/.pytest_cache
rootdir: /home/alex/Projects/corundum, configfile: tox.ini, testpaths: fpga, fpga/app
plugins: forked-1.4.0, split-0.4.0, cocotb-test-0.2.1, xdist-2.4.0
gw0 [69] / gw1 [69] / gw2 [69] / gw3 [69] / gw4 [69] / gw5 [69] / gw6 [69] / gw7 [69] / gw8 [69] / gw9 [69] / gw10 [69] / gw11 [69] / gw12 [69] / gw13 [69] / gw14 [69] / gw15 [69] / gw16 [69] / gw17 [69] / gw18 [69] / gw19 [69] / gw20 [69] / gw21 [69] / gw22 [69] / gw23 [69] / gw24 [69] / gw25 [69] / gw26 [69] / gw27 [69] / gw28 [69] / gw29 [69] / gw30 [69] / gw31 [69] / gw32 [69] / gw33 [69] / gw34 [69] / gw35 [69] / gw36 [69] / gw37 [69] / gw38 [69] / gw39 [69] / gw40 [69] / gw41 [69] / gw42 [69] / gw43 [69] / gw44 [69] / gw45 [69] / gw46 [69] / gw47 [69] / gw48 [69] / gw49 [69] / gw50 [69] / gw51 [69] / gw52 [69] / gw53 [69] / gw54 [69] / gw55 [69] / gw56 [69] / gw57 [69] / gw58 [69] / gw59 [69] / gw60 [69] / gw61 [69] / gw62 [69] / gw63 [69]
... [100%]
======================= 69 passed in 1534.87s (0:25:34) ========================
___________________________________ summary ____________________________________
 py3: commands succeeded
 congratulations :)

Second, all tests can be run by running pytest in the repo root. Running as pytest -n auto is recommended to run multiple tests in parallel on multiple CPUs.

$ cd /path/to/corundum/
$ pytest -n auto
============================= test session starts ==============================
platform linux -- Python 3.9.7, pytest-6.2.5, py-1.10.0, pluggy-0.13.1
rootdir: /home/alex/Projects/corundum, configfile: tox.ini, testpaths: fpga, fpga/app
plugins: split-0.3.0, parallel-0.1.0, cocotb-test-0.2.0, forked-1.3.0, metadata-1.11.0, xdist-2.4.0, html-3.1.1, cov-2.12.1, flake8-1.0.7
gw0 [69] / gw1 [69] / gw2 [69] / gw3 [69] / gw4 [69] / gw5 [69] / gw6 [69] / gw7 [69] / gw8 [69] / gw9 [69] / gw10 [69] / gw11 [69] / gw12 [69] / gw13 [69] / gw14 [69] / gw15 [69] / gw16 [69] / gw17 [69] / gw18 [69] / gw19 [69] / gw20 [69] / gw21 [69] / gw22 [69] / gw23 [69] / gw24 [69] / gw25 [69] / gw26 [69] / gw27 [69] / gw28 [69] / gw29 [69] / gw30 [69] / gw31 [69] / gw32 [69] / gw33 [69] / gw34 [69] / gw35 [69] / gw36 [69] / gw37 [69] / gw38 [69] / gw39 [69] / gw40 [69] / gw41 [69] / gw42 [69] / gw43 [69] / gw44 [69] / gw45 [69] / gw46 [69] / gw47 [69] / gw48 [69] / gw49 [69] / gw50 [69] / gw51 [69] / gw52 [69] / gw53 [69] / gw54 [69] / gw55 [69] / gw56 [69] / gw57 [69] / gw58 [69] / gw59 [69] / gw60 [69] / gw61 [69] / gw62 [69] / gw63 [69]
... [100%]
======================= 69 passed in in 2032.42s (0:33:52) =====================

Third, groups of tests can be run by running pytest in a subdirectory. Running as pytest -n auto is recommended to run multiple tests in parallel on multiple CPUs.

$ cd /path/to/corundum/fpga/common/tb/rx_hash
$ pytest -n 4
============================= test session starts ==============================
platform linux -- Python 3.9.7, pytest-6.2.5, py-1.10.0, pluggy-0.13.1
rootdir: /home/alex/Projects/corundum, configfile: tox.ini
plugins: split-0.3.0, parallel-0.1.0, cocotb-test-0.2.0, forked-1.3.0, metadata-1.11.0, xdist-2.4.0, html-3.1.1, cov-2.12.1, flake8-1.0.7
gw0 [2] / gw1 [2] / gw2 [2] / gw3 [2]
.. [100%]
============================== 2 passed in 37.49s ==============================

Finally, individual tests can be run by runing make. This method provides the capability of overriding parameters and enabling waveform dumps in FST format that are viewable in gtkwave.

$ cd /path/to/corundum/fpga/common/tb/rx_hash
$ make WAVES=1
make -f Makefile results.xml
make[1]: Entering directory '/home/alex/Projects/corundum/fpga/common/tb/rx_hash'
echo 'module iverilog_dump();' > iverilog_dump.v
echo 'initial begin' >> iverilog_dump.v
echo ' $dumpfile("rx_hash.fst");' >> iverilog_dump.v
echo ' $dumpvars(0, rx_hash);' >> iverilog_dump.v
echo 'end' >> iverilog_dump.v
echo 'endmodule' >> iverilog_dump.v
/usr/bin/iverilog -o sim_build/sim.vvp -D COCOTB_SIM=1 -s rx_hash -P rx_hash.DATA_WIDTH=64 -P rx_hash.KEEP_WIDTH=8 -s iverilog_dump -f sim_build/cmds.f -g2012 ../../rtl/rx_hash.v iverilog_dump.v
MODULE=test_rx_hash TESTCASE= TOPLEVEL=rx_hash TOPLEVEL_LANG=verilog \
 /usr/bin/vvp -M /home/alex/.local/lib/python3.9/site-packages/cocotb/libs -m libcocotbvpi_icarus sim_build/sim.vvp -fst
 -.--ns INFO cocotb.gpi ..mbed/gpi_embed.cpp:76 in set_program_name_in_venv Did not detect Python virtual environment. Using system-wide Python interpreter
 -.--ns INFO cocotb.gpi ../gpi/GpiCommon.cpp:99 in gpi_print_registered_impl VPI registered
 0.00ns INFO Running on Icarus Verilog version 11.0 (stable)
 0.00ns INFO Running tests with cocotb v1.7.0.dev0 from /home/alex/.local/lib/python3.9/site-packages/cocotb
 0.00ns INFO Seeding Python random module with 1643529566
 0.00ns INFO Found test test_rx_hash.run_test
 0.00ns INFO Found test test_rx_hash.run_test
 0.00ns INFO Found test test_rx_hash.run_test
 0.00ns INFO Found test test_rx_hash.run_test
 0.00ns INFO Found test test_rx_hash.run_test
 0.00ns INFO Found test test_rx_hash.run_test
 0.00ns INFO Found test test_rx_hash.run_test
 0.00ns INFO Found test test_rx_hash.run_test
 0.00ns INFO running run_test (1/8)
 0.00ns INFO AXI stream source
 0.00ns INFO cocotbext-axi version 0.1.19
 0.00ns INFO Copyright (c) 2020 Alex Forencich
 0.00ns INFO https://github.com/alexforencich/cocotbext-axi
 0.00ns INFO AXI stream source configuration:
 0.00ns INFO Byte size: 8 bits
 0.00ns INFO Data width: 64 bits (8 bytes)
 0.00ns INFO AXI stream source signals:
 0.00ns INFO tdata width: 64 bits
 0.00ns INFO tdest: not present
 0.00ns INFO tid: not present
 0.00ns INFO tkeep width: 8 bits
 0.00ns INFO tlast width: 1 bits
 0.00ns INFO tready: not present
 0.00ns INFO tuser: not present
 0.00ns INFO tvalid width: 1 bits
 0.00ns INFO Reset de-asserted
 0.00ns INFO Reset de-asserted
FST info: dumpfile rx_hash.fst opened for output.
 4.00ns INFO Reset asserted
 4.00ns INFO Reset asserted
 12.00ns INFO Reset de-asserted
 12.00ns INFO Reset de-asserted
 20.00ns INFO TX frame: AxiStreamFrame(tdata=bytearray(b'\xda\xd1\xd2\xd3\xd4\xd5ZQRSTU\x90\x00\x00'), tkeep=None, tid=None, tdest=None, tuser=None, sim_time_start=20000, sim_time_end=None)
 28.00ns INFO TX frame: AxiStreamFrame(tdata=bytearray(b'\xda\xd1\xd2\xd3\xd4\xd5ZQRSTU\x90\x00\x00\x01'), tkeep=None, tid=None, tdest=None, tuser=None, sim_time_start=28000, sim_time_end=None)
 36.00ns INFO TX frame: AxiStreamFrame(tdata=bytearray(b'\xda\xd1\xd2\xd3\xd4\xd5ZQRSTU\x90\x00\x00\x01\x02'), tkeep=None, tid=None, tdest=None, tuser=None, sim_time_start=36000, sim_time_end=None)
 40.00ns INFO RX hash: 0x00000000 (expected: 0x00000000) type: HashType.0 (expected: HashType.0)
 48.00ns INFO TX frame: AxiStreamFrame(tdata=bytearray(b'\xda\xd1\xd2\xd3\xd4\xd5ZQRSTU\x90\x00\x00\x01\x02\x03'), tkeep=None, tid=None, tdest=None, tuser=None, sim_time_start=48000, sim_time_end=None)
 48.00ns INFO RX hash: 0x00000000 (expected: 0x00000000) type: HashType.0 (expected: HashType.0)
 56.00ns INFO RX hash: 0x00000000 (expected: 0x00000000) type: HashType.0 (expected: HashType.0)

################ skip a very large number of lines ################

252652.01ns INFO TX frame: AxiStreamFrame(tdata=bytearray(b'\xda\xd1\xd2\xd3\xd4\xd5ZQRSTU\x08\x00E\x00\x00V\x00\x8b\x00\x00@\x06d\xff\n\x01\x00\x8b\n\x02\x00\x8b\x00\x8b\x10\x8b\x00\x00\x00\x00\x00\x00\x00\x00P\x02 \x00ms\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !"#$%&\'()*+,-'), tkeep=None, tid=None, tdest=None, tuser=None, sim_time_start=252652007, sim_time_end=None)
252744.01ns INFO RX hash: 0xa2a55ee3 (expected: 0xa2a55ee3) type: HashType.TCP|IPV4 (expected: HashType.TCP|IPV4)
252860.01ns INFO TX frame: AxiStreamFrame(tdata=bytearray(b'\xda\xd1\xd2\xd3\xd4\xd5ZQRSTU\x08\x00E\x00\x00V\x00\x8c\x00\x00@\x06d\xfc\n\x01\x00\x8c\n\x02\x00\x8c\x00\x8c\x10\x8c\x00\x00\x00\x00\x00\x00\x00\x00P\x02 \x00mo\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !"#$%&\'()*+,-'), tkeep=None, tid=None, tdest=None, tuser=None, sim_time_start=252860007, sim_time_end=None)
252952.01ns INFO RX hash: 0x6308c813 (expected: 0x6308c813) type: HashType.TCP|IPV4 (expected: HashType.TCP|IPV4)
252960.01ns INFO run_test passed
252960.01ns INFO **
 ** TEST STATUS SIM TIME (ns) REAL TIME (s) RATIO (ns/s) **
 **
 ** test_rx_hash.run_test PASS 11144.00 1.14 9781.95 **
 ** test_rx_hash.run_test PASS 44448.00 3.80 11688.88 **
 ** test_rx_hash.run_test PASS 12532.00 1.40 8943.27 **
 ** test_rx_hash.run_test PASS 49984.00 4.42 11302.44 **
 ** test_rx_hash.run_test PASS 13088.00 1.54 8479.38 **
 ** test_rx_hash.run_test PASS 52208.00 4.62 11308.18 **
 ** test_rx_hash.run_test PASS 13940.00 1.65 8461.27 **
 ** test_rx_hash.run_test PASS 55616.00 5.03 11046.45 **
 **
 ** TESTS=8 PASS=8 FAIL=0 SKIP=0 252960.01 25.11 10073.76 **
 **

make[1]: Leaving directory '/home/alex/Projects/corundum/fpga/common/tb/rx_hash'

2.5. Setting up the FPGA build environment (Vivado)

Building FPGA configurations for Xilinx devices requires Vivado [https://www.xilinx.com/products/design-tools/vivado.html]. Linux is the recommended operating system for a build environment due to the use of symlinks (which can cause problems on Windows) and makefiles for build automation. Additionally, Vivado uses more CPU cores for building on Linux than on Windows. It is not recommended to run Vivado inside of a virtual machine as Vivado uses a significant amount of RAM during the build process. Download and install the appropriate version of Vivado. Make sure to install device support for your target device; support for other devices can be disabled to save disk space.

Licenses may be required, depending on the target device. A bare install of Vivado without any licenses runs in “WebPACK” mode and has limited device support. If your target device is on the WebPACK device list [https://www.xilinx.com/products/design-tools/vivado/vivado-webpack.html#architecture], then no Vivado license is required. Otherwise, you will need access to a Vivado license to build the design.

Additionally, the 100G MAC IP cores on UltraScale and UltraScale+ require separate licenses. These licenses are free of charge, and can be generated for UltraScale [https://www.xilinx.com/products/intellectual-property/cmac.html] and UltraScale+ [https://www.xilinx.com/products/intellectual-property/cmac_usplus.html]. If your target design uses the 100G CMAC IP, then you will need one of these licenses to build the design.

For example: if you want to build a 100G design for an Alveo U50, you will not need a Vivado license as the U50 is supported under WebPACK, but you will need to generate a (free-of-charge) license for the CMAC IP for UltraScale+.

Before building a design with Vivado, you’ll have to source the appropriate settings file. For example:

$ source /opt/Xilinx/Vivado/2020.2/settings64.sh
$ make

2.6. Building the FPGA configuration

Each design contains a set of makefiles for automating the build process. To use the makefile, simply source the settings file for the required toolchain and then run make. Note that the repository makes significant use of symbolic links, so it is highly recommended to build the design under Linux.

For example:

$ cd /path/to/corundum/fpga/mqnic/[board]/fpga_[variant]/fpga
$ source /opt/Xilinx/Vivado/2020.2/settings64.sh
$ make

2.7. Building the driver

To build the driver, you will first need to install the required compiler and kernel source code packages. After these packages are installed, simply run make.

$ cd /path/to/corundum/modules/mqnic
$ make

Note that the driver currently does not support RHEL, centos, and related distributions that use very old and significantly modified kernels where the reported kernel version number is not a reliable indication of the internal kernel API.

2.8. Building the userspace tools

To build the userspace tools, you will first need to install the required compiler packages. After these packages are installed, simply run make.

$ cd /path/to/corundum/utils
$ make

2.9. Setting up the PetaLinux build environment

Building PetaLinux projects for Xilinx devices requires PetaLinux Tools [https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html]. Linux is the recommended operating system for a build environment due to the use of symlinks (which can cause problems on Windows) and makefiles for build automation. Download and install the appropriate version of PetaLinux Tools. Make sure to install device support for your target device; support for other devices can be disabled to save disk space.

An example for a PetaLinux project in Corundum is accompanying the FPGA design using the Xilinx ZynqMP SoC as host system for mqnic on the Xilinx ZCU106 board. See fpga/mqnic/ZCU106/fpga_zynqmp/README.md.

Before building a PetaLinux project, you’ll have to source the appropriate settings file. For example:

$ source /opt/Xilinx/PetaLinux/2021.1/settings.sh
$ make -C path/to/petalinux/project build-boot

2.10. Loading the FPGA design

There are three main ways for loading Corundum on to an FPGA board. The first is via JTAG, into volatile FPGA configuration memory. This is best for development and debugging, especially when complemented with a baseline design with the same PCIe interface configuration stored in flash. The second is via indirect JTAG, into nonvolatile on-card flash memory. This is quite slow. The third is via PCI express, into nonvolatile on-card memory. This is the fastest method of programming the flash, but it requires the board to already be running the Corundum design.

For a card that’s not already running Corundum, there are two options for programming the flash. The first is to use indirect JTAG, but this is very slow. The second is to first load the design via JTAG into volatile configuration memory, then perform a warm reboot, and finally write the design into flash via PCIe with the mqnic-fw utility.

Loading the design via JTAG into volatile configuration memory with Vivado is straightforward: install the card into a host computer, attach the JTAG cable, power up the host computer, and use Vivado to connect and load the bit file into the FPGA. When using the makefile, run make program to program the device. If physical access is a problem, it is possible to run a hardware server instance on the host computer and connect to the hardware server over the network. Once the design is loaded into the FPGA, perform either a hot reset (via pcie_hot_reset.sh or mqnic-fw -t, but only if the card was enumerated at boot and the PCIe configuration has not changed) or a warm reboot.

Loading the design via indirect JTAG into nonvolatile memory with Vivado requires basically the same steps as loading it into volatile configuration memory, the main difference is that the configuration flash image must first be generated by running make fpga.mcs after using make to generate the bit file. Once this file is generated, connect with the hardware manager, add the configuration memory device (check the makefile for the part number), and program the flash. After the programming operation is complete, boot the FPGA from the configuration memory, either via Vivado (right click -> boot from configuration memory) or by performing a cold reboot (full shut down, then power on). When using the makefile, run make flash to generate the flash images, program the flash via indirect JTAG, and boot the FPGA from the configuration memory. Finally, reboot the host computer to re-enumerate the PCIe bus.

Loading the design via PCI express is straightforward: use the mqnic-fw utility to load the bit file into flash, then trigger an FPGA reboot to load the new design. This does not require the kernel module to be loaded. With the kernel module loaded, point mqnic-fw either to /dev/mqnic<n> or to one of the associated network interfaces. Without the kernel module loaded, point mqnic-fw either to the raw PCIe ID, or to /sys/bus/pci/devices/<pcie-id>/resource0; check lspci for the PCIe ID. Use -w to specify the bit file to load, then -b to command the FPGA to reset and reload its configuration from flash. You can also use -t to trigger a hot reset to reset the design.

Query device information with mqnic-fw, with no kernel module loaded:

$ sudo ./mqnic-fw -d 81:00.0
PCIe ID (device): 0000:81:00.0
PCIe ID (upstream port): 0000:80:01.1
FPGA ID: 0x04b77093
FPGA part: XCU50
FW ID: 0x00000000
FW version: 0.0.1.0
Board ID: 0x10ee9032
Board version: 1.0.0.0
Build date: 2022-01-05 08:33:23 UTC (raw 0x61d557d3)
Git hash: ddd7e639
Release info: 00000000
Flash type: SPI
Flash format: 0x00048100
Data width: 4
Manufacturer ID: 0x20
Memory type: 0xbb
Memory capacity: 0x21
Flash size: 128 MB
Write buffer size: 256 B
Erase block size: 4096 B
Flash segment 0: start 0x00000000 length 0x01002000
Flash segment 1: start 0x01002000 length 0x06ffe000
Selected: segment 1 start 0x01002000 length 0x06ffe000

Write design into nonvolatile flash memory with mqnic-fw, with no kernel module loaded:

$ sudo ./mqnic-fw -d 81:00.0 -w ../fpga/mqnic/AU50/fpga_100g/fpga/fpga.bit
PCIe ID (device): 0000:81:00.0
PCIe ID (upstream port): 0000:80:01.1
FPGA ID: 0x04b77093
FPGA part: XCU50
FW ID: 0x00000000
FW version: 0.0.1.0
Board ID: 0x10ee9032
Board version: 1.0.0.0
Build date: 2022-01-05 08:33:23 UTC (raw 0x61d557d3)
Git hash: ddd7e639
Release info: 00000000
Flash type: SPI
Flash format: 0x00048100
Data width: 4
Manufacturer ID: 0x20
Memory type: 0xbb
Memory capacity: 0x21
Flash size: 128 MB
Write buffer size: 256 B
Erase block size: 4096 B
Flash segment 0: start 0x00000000 length 0x01002000
Flash segment 1: start 0x01002000 length 0x06ffe000
Selected: segment 1 start 0x01002000 length 0x06ffe000
Erasing flash...
Start address: 0x01002000
Length: 0x01913000
Erase address 0x02910000, length 0x00005000 (99%)
Writing flash...
Start address: 0x01002000
Length: 0x01913000
Write address 0x02910000, length 0x00005000 (99%)
Verifying flash...
Start address: 0x01002000
Length: 0x01913000
Read address 0x02910000, length 0x00005000 (99%)
Programming succeeded!

Reboot FPGA to load design from flash with mqnic-fw, with no kernel module loaded:

$ sudo ./mqnic-fw -d 81:00.0 -b
PCIe ID (device): 0000:81:00.0
PCIe ID (upstream port): 0000:80:01.1
FPGA ID: 0x04b77093
FPGA part: XCU50
FW ID: 0x00000000
FW version: 0.0.1.0
Board ID: 0x10ee9032
Board version: 1.0.0.0
Build date: 2022-01-05 08:33:23 UTC (raw 0x61d557d3)
Git hash: ddd7e639
Release info: 00000000
Flash type: SPI
Flash format: 0x00048100
Data width: 4
Manufacturer ID: 0x20
Memory type: 0xbb
Memory capacity: 0x21
Flash size: 128 MB
Write buffer size: 256 B
Erase block size: 4096 B
Flash segment 0: start 0x00000000 length 0x01002000
Flash segment 1: start 0x01002000 length 0x06ffe000
Selected: segment 1 start 0x01002000 length 0x06ffe000
Preparing to reset device...
Disabling PCIe fatal error reporting on port...
No driver bound
Triggering IPROG to reload FPGA...
Removing device...
Performing hot reset on upstream port...
Rescanning on upstream port...
Success, device is online!

2.11. Loading the kernel module

Once the kernel module is built, load it with insmod:

$ sudo insmod mqnic.ko

When the driver loads, it will print some debug information:

[1502.394486] mqnic 0000:81:00.0: mqnic PCI probe
[1502.394494] mqnic 0000:81:00.0: Vendor: 0x1234
[1502.394496] mqnic 0000:81:00.0: Device: 0x1001
[1502.394498] mqnic 0000:81:00.0: Subsystem vendor: 0x10ee
[1502.394500] mqnic 0000:81:00.0: Subsystem device: 0x9032
[1502.394501] mqnic 0000:81:00.0: Class: 0x020000
[1502.394504] mqnic 0000:81:00.0: PCI ID: 0000:81:00.0
[1502.394511] mqnic 0000:81:00.0: Max payload size: 512 bytes
[1502.394513] mqnic 0000:81:00.0: Max read request size: 512 bytes
[1502.394515] mqnic 0000:81:00.0: Link capability: gen 3 x16
[1502.394516] mqnic 0000:81:00.0: Link status: gen 3 x16
[1502.394518] mqnic 0000:81:00.0: Relaxed ordering: enabled
[1502.394520] mqnic 0000:81:00.0: Phantom functions: disabled
[1502.394521] mqnic 0000:81:00.0: Extended tags: enabled
[1502.394522] mqnic 0000:81:00.0: No snoop: enabled
[1502.394523] mqnic 0000:81:00.0: NUMA node: 1
[1502.394531] mqnic 0000:81:00.0: 126.016 Gb/s available PCIe bandwidth (8.0 GT/s PCIe x16 link)
[1502.394554] mqnic 0000:81:00.0: enabling device (0000 -> 0002)
[1502.394587] mqnic 0000:81:00.0: Control BAR size: 16777216
[1502.396014] mqnic 0000:81:00.0: Device-level register blocks:
[1502.396016] mqnic 0000:81:00.0: type 0xffffffff (v 0.0.1.0)
[1502.396019] mqnic 0000:81:00.0: type 0x0000c000 (v 0.0.1.0)
[1502.396021] mqnic 0000:81:00.0: type 0x0000c004 (v 0.0.1.0)
[1502.396023] mqnic 0000:81:00.0: type 0x0000c080 (v 0.0.1.0)
[1502.396025] mqnic 0000:81:00.0: type 0x0000c120 (v 0.0.1.0)
[1502.396027] mqnic 0000:81:00.0: type 0x0000c140 (v 0.0.1.0)
[1502.396029] mqnic 0000:81:00.0: type 0x0000c150 (v 0.0.1.0)
[1502.396038] mqnic 0000:81:00.0: FPGA ID: 0x04b77093
[1502.396040] mqnic 0000:81:00.0: FW ID: 0x00000000
[1502.396041] mqnic 0000:81:00.0: FW version: 0.0.1.0
[1502.396043] mqnic 0000:81:00.0: Board ID: 0x10ee9032
[1502.396044] mqnic 0000:81:00.0: Board version: 1.0.0.0
[1502.396046] mqnic 0000:81:00.0: Build date: 2022-03-03 07:39:57 UTC (raw: 0x622070cd)
[1502.396049] mqnic 0000:81:00.0: Git hash: 8851b3b1
[1502.396051] mqnic 0000:81:00.0: Release info: 00000000
[1502.396056] mqnic 0000:81:00.0: IF offset: 0x00000000
[1502.396057] mqnic 0000:81:00.0: IF count: 1
[1502.396059] mqnic 0000:81:00.0: IF stride: 0x01000000
[1502.396060] mqnic 0000:81:00.0: IF CSR offset: 0x00080000
[1502.396065] mqnic 0000:81:00.0: Resetting Alveo CMS
[1502.613317] mqnic 0000:81:00.0: Read 4 MACs from Alveo BMC
[1502.624743] mqnic 0000:81:00.0: registered PHC (index 5)
[1502.624748] mqnic 0000:81:00.0: Creating interface 0
[1502.624798] mqnic 0000:81:00.0: Interface-level register blocks:
[1502.624799] mqnic 0000:81:00.0: type 0x0000c001 (v 0.0.2.0)
[1502.624801] mqnic 0000:81:00.0: type 0x0000c010 (v 0.0.1.0)
[1502.624803] mqnic 0000:81:00.0: type 0x0000c020 (v 0.0.1.0)
[1502.624804] mqnic 0000:81:00.0: type 0x0000c030 (v 0.0.1.0)
[1502.624805] mqnic 0000:81:00.0: type 0x0000c021 (v 0.0.1.0)
[1502.624806] mqnic 0000:81:00.0: type 0x0000c031 (v 0.0.1.0)
[1502.624807] mqnic 0000:81:00.0: type 0x0000c003 (v 0.0.1.0)
[1502.624811] mqnic 0000:81:00.0: IF features: 0x00000711
[1502.624812] mqnic 0000:81:00.0: Max TX MTU: 9214
[1502.624813] mqnic 0000:81:00.0: Max RX MTU: 9214
[1502.624816] mqnic 0000:81:00.0: Event queue offset: 0x00100000
[1502.624817] mqnic 0000:81:00.0: Event queue count: 32
[1502.624818] mqnic 0000:81:00.0: Event queue stride: 0x00000020
[1502.624822] mqnic 0000:81:00.0: TX queue offset: 0x00200000
[1502.624823] mqnic 0000:81:00.0: TX queue count: 8192
[1502.624824] mqnic 0000:81:00.0: TX queue stride: 0x00000020
[1502.624827] mqnic 0000:81:00.0: TX completion queue offset: 0x00400000
[1502.624828] mqnic 0000:81:00.0: TX completion queue count: 8192
[1502.624829] mqnic 0000:81:00.0: TX completion queue stride: 0x00000020
[1502.624832] mqnic 0000:81:00.0: RX queue offset: 0x00600000
[1502.624833] mqnic 0000:81:00.0: RX queue count: 256
[1502.624834] mqnic 0000:81:00.0: RX queue stride: 0x00000020
[1502.624838] mqnic 0000:81:00.0: RX completion queue offset: 0x00700000
[1502.624838] mqnic 0000:81:00.0: RX completion queue count: 256
[1502.624839] mqnic 0000:81:00.0: RX completion queue stride: 0x00000020
[1502.624841] mqnic 0000:81:00.0: Max desc block size: 8
[1502.632850] mqnic 0000:81:00.0: Port-level register blocks:
[1502.632855] mqnic 0000:81:00.0: type 0x0000c040 (v 0.0.1.0)
[1502.632860] mqnic 0000:81:00.0: Scheduler type: 0x0000c040
[1502.632861] mqnic 0000:81:00.0: Scheduler offset: 0x00800000
[1502.632862] mqnic 0000:81:00.0: Scheduler channel count: 8192
[1502.632863] mqnic 0000:81:00.0: Scheduler channel stride: 0x00000004
[1502.632864] mqnic 0000:81:00.0: Scheduler count: 1
[1502.632866] mqnic 0000:81:00.0: Port count: 1
[1503.217179] mqnic 0000:81:00.0: Registered device mqnic0

The driver will attempt to read MAC addresses from the card. If it fails, it will fall back on random MAC addresses. On some cards, the MAC addresses are fixed and cannot be changed, on other cards they are written to use-accessible EEPROM and as such can be changed. Some cards with EEPROM come with blank EEPROMs, so if you want a persistent MAC address, you’ll have to write a base MAC address into the EEPROM. And finally, some cards do not have an EEPROM for storing MAC addresses, and persistent MAC addresses are not currently supported on these cards.

2.12. Testing the design

To test the design, connect it to another NIC, either directly with a DAC cable or similar, or via a switch.

Before performing any testing, an IP address must be assigned through the Linux kernel. There are various ways to do this, depending on the distribution in question. For example, using iproute2:

$ sudo ip link set dev enp129s0 up
$ sudo ip addr add 10.0.0.2/24 dev enp129s0

You can also change the MTU setting:

$ sudo ip link set mtu 9000 dev enp129s0

Note that NetworkManager can fight over the network interface configuration (depending on the linux distribution). If the IP address disappears from the interface, then this is likely the fault of NetworkManager as it attempts to dynamically configure the interface. One solution for this is simply to use NetworkManager to configure the interface instead of iproute2. Another is to statically configure the interface using configuration files in /etc/network/interfaces so that NetworkManager will leave it alone.

One the card is configured, using ping is a good first test:

$ ping 10.0.0.1
PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data.
64 bytes from 10.0.0.1: icmp_seq=1 ttl=64 time=0.221 ms
64 bytes from 10.0.0.1: icmp_seq=2 ttl=64 time=0.109 ms
^C
--- 10.0.0.1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1052ms
rtt min/avg/max/mdev = 0.109/0.165/0.221/0.056 ms

If ping works, then try iperf.

On the server:

$ iperf3 -s

Server listening on 5201

Accepted connection from 10.0.0.2, port 54316
[5] local 10.0.0.1 port 5201 connected to 10.0.0.2 port 54318
[ID] Interval Transfer Bitrate
[5] 0.00-1.00 sec 2.74 GBytes 23.6 Gbits/sec
[5] 1.00-2.00 sec 2.85 GBytes 24.5 Gbits/sec
[5] 2.00-3.00 sec 2.82 GBytes 24.2 Gbits/sec
[5] 3.00-4.00 sec 2.83 GBytes 24.3 Gbits/sec
[5] 4.00-5.00 sec 2.82 GBytes 24.2 Gbits/sec
[5] 5.00-6.00 sec 2.76 GBytes 23.7 Gbits/sec
[5] 6.00-7.00 sec 2.63 GBytes 22.6 Gbits/sec
[5] 7.00-8.00 sec 2.81 GBytes 24.2 Gbits/sec
[5] 8.00-9.00 sec 2.73 GBytes 23.5 Gbits/sec
[5] 9.00-10.00 sec 2.73 GBytes 23.4 Gbits/sec
[5] 10.00-10.00 sec 384 KBytes 7.45 Gbits/sec
- -
[ID] Interval Transfer Bitrate
[5] 0.00-10.00 sec 27.7 GBytes 23.8 Gbits/sec receiver

Server listening on 5201

On the client:

$ iperf3 -c 10.0.0.1
Connecting to host 10.0.0.1, port 5201
[5] local 10.0.0.2 port 54318 connected to 10.0.0.1 port 5201
[ID] Interval Transfer Bitrate Retr Cwnd
[5] 0.00-1.00 sec 2.74 GBytes 23.6 Gbits/sec 0 2.18 MBytes
[5] 1.00-2.00 sec 2.85 GBytes 24.5 Gbits/sec 0 2.18 MBytes
[5] 2.00-3.00 sec 2.82 GBytes 24.2 Gbits/sec 0 2.29 MBytes
[5] 3.00-4.00 sec 2.83 GBytes 24.3 Gbits/sec 0 2.40 MBytes
[5] 4.00-5.00 sec 2.82 GBytes 24.2 Gbits/sec 0 2.40 MBytes
[5] 5.00-6.00 sec 2.76 GBytes 23.7 Gbits/sec 0 2.65 MBytes
[5] 6.00-7.00 sec 2.63 GBytes 22.6 Gbits/sec 0 2.65 MBytes
[5] 7.00-8.00 sec 2.81 GBytes 24.2 Gbits/sec 0 2.65 MBytes
[5] 8.00-9.00 sec 2.73 GBytes 23.5 Gbits/sec 0 2.65 MBytes
[5] 9.00-10.00 sec 2.73 GBytes 23.4 Gbits/sec 0 2.65 MBytes
- -
[ID] Interval Transfer Bitrate Retr
[5] 0.00-10.00 sec 27.7 GBytes 23.8 Gbits/sec 0 sender
[5] 0.00-10.00 sec 27.7 GBytes 23.8 Gbits/sec receiver

iperf Done.

Finally, test the PTP synchronization performance with ptp4l from linuxptp.

On the server:

$ sudo ptp4l -i enp193s0np0 --masterOnly=1 -m --logSyncInterval=-3
ptp4l[4463.798]: selected /dev/ptp2 as PTP clock
ptp4l[4463.799]: port 1: INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[4463.799]: port 0: INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[4471.745]: port 1: LISTENING to MASTER on ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES
ptp4l[4471.746]: selected local clock ec0d9a.fffe.6821d4 as best master
ptp4l[4471.746]: port 1: assuming the grand master role

On the client:

$ sudo ptp4l -i enp129s0 --slaveOnly=1 -m
ptp4l[642.961]: selected /dev/ptp5 as PTP clock
ptp4l[642.962]: port 1: INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[642.962]: port 0: INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[643.477]: port 1: new foreign master ec0d9a.fffe.6821d4-1
ptp4l[647.478]: selected best master clock ec0d9a.fffe.6821d4
ptp4l[647.478]: port 1: LISTENING to UNCALIBRATED on RS_SLAVE
ptp4l[648.233]: port 1: UNCALIBRATED to SLAVE on MASTER_CLOCK_SELECTED
ptp4l[648.859]: rms 973559315 max 1947121298 freq -41295 +/- 15728 delay 643 +/- 0
ptp4l[649.860]: rms 698 max 1236 freq -44457 +/- 949 delay 398 +/- 0
ptp4l[650.861]: rms 1283 max 1504 freq -42099 +/- 257 delay 168 +/- 0
ptp4l[651.862]: rms 612 max 874 freq -42059 +/- 85 delay 189 +/- 1
ptp4l[652.863]: rms 127 max 245 freq -42403 +/- 85
ptp4l[653.865]: rms 58 max 81 freq -42612 +/- 36 delay 188 +/- 0
ptp4l[654.866]: rms 21 max 36 freq -42603 +/- 12 delay 181 +/- 0
ptp4l[655.867]: rms 6 max 12 freq -42584 +/- 7 delay 174 +/- 1
ptp4l[656.868]: rms 14 max 26 freq -42606 +/- 12
ptp4l[657.869]: rms 19 max 23 freq -42631 +/- 11 delay 173 +/- 0
ptp4l[658.870]: rms 24 max 35 freq -42660 +/- 12 delay 173 +/- 0
ptp4l[659.870]: rms 23 max 35 freq -42679 +/- 16 delay 173 +/- 0
ptp4l[660.872]: rms 18 max 20 freq -42696 +/- 5 delay 170 +/- 0
ptp4l[661.873]: rms 18 max 30 freq -42714 +/- 8 delay 167 +/- 1
ptp4l[662.874]: rms 26 max 36 freq -42747 +/- 10 delay 168 +/- 0
ptp4l[663.875]: rms 18 max 21 freq -42757 +/- 10 delay 167 +/- 0
ptp4l[664.876]: rms 14 max 17 freq -42767 +/- 8 delay 167 +/- 1
ptp4l[665.877]: rms 9 max 12 freq -42741 +/- 7 delay 168 +/- 2

In this case, ptp4l has converged to an offset of well under 100 ns, reporting a frequency difference of about -43 ppm.

While ptp4l is syncing the clock, the kernel module will print some debug information:

[642.943481] mqnic 0000:81:00.0: mqnic_phc_adjfine scaled_ppm: 0
[642.943487] mqnic 0000:81:00.0: mqnic_phc_adjfine adj: 0x400000000
[647.860040] mqnic 0000:81:00.0: mqnic_start_xmit TX TS requested
[647.860084] mqnic 0000:81:00.0: mqnic_process_tx_cq TX TS requested
[648.090566] mqnic 0000:81:00.0: mqnic_phc_adjfine scaled_ppm: 2795012
[648.090572] mqnic 0000:81:00.0: mqnic_phc_adjfine adj: 0x4000b2e18
[648.090575] mqnic 0000:81:00.0: mqnic_phc_adjtime delta: -1947115961
[648.215705] mqnic 0000:81:00.0: mqnic_phc_adjfine scaled_ppm: 3241067
[648.215711] mqnic 0000:81:00.0: mqnic_phc_adjfine adj: 0x4000cf6da
[648.340845] mqnic 0000:81:00.0: mqnic_phc_adjfine scaled_ppm: 3199401
[648.340851] mqnic 0000:81:00.0: mqnic_phc_adjfine adj: 0x4000ccc30
[648.465995] mqnic 0000:81:00.0: mqnic_phc_adjfine scaled_ppm: 3161092
[648.466001] mqnic 0000:81:00.0: mqnic_phc_adjfine adj: 0x4000ca4f5
[648.591129] mqnic 0000:81:00.0: mqnic_phc_adjfine scaled_ppm: 3121946
[648.591135] mqnic 0000:81:00.0: mqnic_phc_adjfine adj: 0x4000c7cdf
[648.716275] mqnic 0000:81:00.0: mqnic_phc_adjfine scaled_ppm: 3082853
[648.716281] mqnic 0000:81:00.0: mqnic_phc_adjfine adj: 0x4000c54d7
[648.841425] mqnic 0000:81:00.0: mqnic_phc_adjfine scaled_ppm: 3048881
[648.841431] mqnic 0000:81:00.0: mqnic_phc_adjfine adj: 0x4000c320e
[648.966550] mqnic 0000:81:00.0: mqnic_phc_adjfine scaled_ppm: 3012985
[648.966556] mqnic 0000:81:00.0: mqnic_phc_adjfine adj: 0x4000c0d4c
[649.091601] mqnic 0000:81:00.0: mqnic_phc_adjfine scaled_ppm: 2980479
[649.091607] mqnic 0000:81:00.0: mqnic_phc_adjfine adj: 0x4000bec03
[649.216740] mqnic 0000:81:00.0: mqnic_phc_adjfine scaled_ppm: 2950457
[649.216746] mqnic 0000:81:00.0: mqnic_phc_adjfine adj: 0x4000bcd45
[649.341844] mqnic 0000:81:00.0: mqnic_phc_adjfine scaled_ppm: 2922995
[649.341850] mqnic 0000:81:00.0: mqnic_phc_adjfine adj: 0x4000bb126
[649.466966] mqnic 0000:81:00.0: mqnic_phc_adjfine scaled_ppm: 2897658
[649.466972] mqnic 0000:81:00.0: mqnic_phc_adjfine adj: 0x4000b9734
[649.592007] mqnic 0000:81:00.0: mqnic_phc_adjfine scaled_ppm: 2875145
[649.592013] mqnic 0000:81:00.0: mqnic_phc_adjfine adj: 0x4000b8026
[649.717159] mqnic 0000:81:00.0: mqnic_phc_adjfine scaled_ppm: 2854962
[649.717165] mqnic 0000:81:00.0: mqnic_phc_adjfine adj: 0x4000b6b7b
[649.776717] mqnic 0000:81:00.0: mqnic_start_xmit TX TS requested
[649.776761] mqnic 0000:81:00.0: mqnic_process_tx_cq TX TS requested
[649.842186] mqnic 0000:81:00.0: mqnic_phc_adjfine scaled_ppm: 2813737
[649.842191] mqnic 0000:81:00.0: mqnic_phc_adjfine adj: 0x4000b4144
[649.967434] mqnic 0000:81:00.0: mqnic_phc_adjfine scaled_ppm: 2800052
[649.967440] mqnic 0000:81:00.0: mqnic_phc_adjfine adj: 0x4000b3341

In this case, the core clock frequency is slightly less than 250 MHz. You can compute the clock frequency in GHz like so:

>>> 2**32/0x4000b3341
0.24998931910318553

3. Debugging

3.1. The server rebooted when configuring the FPGA

This is a common problem caused by the server management subsystem (IPMI, iLO, iDRAC, or whatever your server manufacturer calls it). It detects the PCIe device falling off the bus when the FPGA is reset, and does something in response. In some machines it just complains bitterly by logging an event and turning on an angry red LED. In other machines, it does that, and then immediately reboots the machine. Highly annoying. However, there is a simple solution for this that involves some poking around in PCIe configuration registers to disable PCIe fatal error reporting on the port that the device is connected to.

Run the pcie_disable_fatal_err.sh script before you configure the FPGA. Specify the PCIe device ID of the FPGA board as the argument (xy:00.0, as shown in lspci). You’ll have to do a warm reboot after loading the configuration if the PCIe BAR configuration has changed. This will most likely be the case when going from a stock flash image that brings up the PCIe link to Corundum, but not from Corundum to Corundum unless something was changed in the PCIe IP core configuration. If the BAR configuration has not changed, then using the pcie_hot_reset.sh script to perform a hot reset of the device may be sufficient. The firmware update utility mqnic-fw includes the same functionality as pcie_disable_fatal_err.sh and pcie_hot_reset.sh, so if the card is running a Corundum design, then you can use mqnic-fw -t to disable fatal error reporting and reset the card before connecting to it via JTAG.

3.2. The link is down

Things to check, in no particular order:

	Try a hot reset of the card

	Try an unmodified “known good” design for your board, either corundum or verilog-ethernet

	Try using a direct attach copper cable to rule out issues with optical transceivers.

	Try a different link partner—try a NIC instead of a switch, or a different model NIC.

	txdisable/lpmode/reset pins—only applies if you’re using optical transceivers or active optical cables. If these pins are pulled the wrong way, the lasers in the transceiver will not turn on, and the link will not come up. (No, I have never wasted an hour waiting for Vivado to do its thing after pulling lpmode the wrong way…on several different boards…)

	Optical module CDR settings—if you’re trying to run a 25G or 100G optical transceiver or active optical cable at 10G or 40G, you may need to disable the module CDRs via I2C by writing 0x00 to MSA register 98 on I2C address 0x50 (CDR control). (No, I have not wasted several days trying to figure out why the electrical loopback works fine at 10G, but the optical transceiver only works at 25G…)

	Check settings at link partner—some devices are better about figuring out the proper configuration than others and need to have the correct settings applied manually (e.g. Mellanox NICs are quite good, but most packet switches can be rather bad about this and may only look at the line rate reported in the transceiver EEPROM instead of what’s actually going on on the link). Also check to make sure the link partner doesn’t have some sort of disagreement with the cable/transceiver - some devices, usually switches, are very picky about what the EEPROM says about who manufactured the cable.

	Check FEC settings—in general, 100G devices seem to require the use of RS-FEC, 10G and 25G usually run fine without FEC, but it may need to be manually disabled on the link partner.

	Serdes configuration—ensure the correct line rate, gearbox settings, etc. are correct. Some boards also have p/n swapped (e.g. ExaNIC X10/X25), so check tx/rx invert settings. (Yes, I managed to figure that one out after some head-scratching despite not having access to the schematic)

	Serdes site locations—make sure you’re using the correct pins.

	Serdes reference clock configuration—make sure the reference clock matches the serdes configuration, and on some boards the reference clock needs to be configured in some way before use.

3.3. Ping and iperf don’t work

Things to check, in no particular order:

	Check that the interface is up (ip link set dev <interface> up)

	Check that the interface has an IP address assigned (ip addr, ip -c a, ip -c -br, to check, ip addr add 192.168.1.1/24 dev <interface> to set)

	The corundum driver does not currently report the link status to the OS, so check for a link light (not all design variants implement this) and check the link partner for the link status (ip link, NO-CARRIER means the link is down at the PHY layer)

	Try hot resetting the card with the link partner connected (clear up possible RX DFE problem)

	Check tcpdump for inbound traffic on both ends of the link tcpdump -i <interface> -Q in to see what is actually traversing the link. If the TX direction works but the RX direction does not, there is a high probability it is a transceiver DFE issue that may be fixable with a hot reset.

	Check with mqnic-dump to see if there is anything stuck in transmit queues, transmit or receive completion queues, or event queues.

3.4. The device loses its IP address

This is not a corundum issue, this is NetworkManager or a similar application causing trouble by attempting to run DHCP or similar on the interface. There are basically four options here: disable NetworkManager, configure NetworkManager to ignore the interface, use NetworkManager to configure the interface and assign the IP address you want, or use network namespaces to isolate the interface from NetworkManager. Unfortunately, if you have a board that doesn’t support persistent MAC addresses, it may not be possible to configure NetworkManager to deal with the interface correctly.

4. Performance Tuning

Here are some tips and tricks to get the best possible performance with Corundum.

First, it’s always a good idea to test with a commercial 100G NIC as a sanity check - if a commercial 100G NIC doesn’t run near 100G line rate, then Corundum will definitely have issues.

Second, check the PCIe configuration with lspci. You’ll want to make sure that the card is actually running with the full PCIe bandwidth. Some x16 PCIe slots don’t have all of the lanes physically wired, and in many cases lanes can be switched between slots depending on which slots are used—for example, two slots may share 16 lanes, if the second slot is empty, the first slot will use all 16 lanes, but if the second slot has a card installed, both slots will run with 8 lanes.

This is what lspci reports for Corundum in a gen 3 x16 configuration in a machine with an AMD EPYC 7302P CPU:

$ sudo lspci -d 1234:1001 -vvv
81:00.0 Ethernet controller: Device 1234:1001
 Subsystem: Silicom Denmark Device a00e
 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+
 Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx-
 Latency: 0, Cache Line Size: 64 bytes
 Interrupt: pin ? routed to IRQ 337
 NUMA node: 1
 IOMMU group: 13
 Region 0: Memory at 20020000000 (64-bit, prefetchable) [size=16M]
 Capabilities: [40] Power Management version 3
 Flags: PMEClk- DSI- D1- D2- AuxCurrent=0mA PME(D0-,D1-,D2-,D3hot-,D3cold-)
 Status: D0 NoSoftRst+ PME-Enable- DSel=0 DScale=0 PME-
 Capabilities: [48] MSI: Enable+ Count=32/32 Maskable+ 64bit+
 Address: 00000000fee00000 Data: 0000
 Masking: 00000000 Pending: 00000000
 Capabilities: [70] Express (v2) Endpoint, MSI 00
 DevCap: MaxPayload 1024 bytes, PhantFunc 0, Latency L0s <64ns, L1 <1us
 ExtTag+ AttnBtn- AttnInd- PwrInd- RBE+ FLReset- SlotPowerLimit 75.000W
 DevCtl: CorrErr+ NonFatalErr+ FatalErr+ UnsupReq-
 RlxdOrd+ ExtTag+ PhantFunc- AuxPwr- NoSnoop+
 MaxPayload 512 bytes, MaxReadReq 512 bytes
 DevSta: CorrErr+ NonFatalErr- FatalErr- UnsupReq+ AuxPwr- TransPend-
 LnkCap: Port #0, Speed 8GT/s, Width x16, ASPM not supported
 ClockPM- Surprise- LLActRep- BwNot- ASPMOptComp+
 LnkCtl: ASPM Disabled; RCB 64 bytes, Disabled- CommClk+
 ExtSynch- ClockPM- AutWidDis- BWInt- AutBWInt-
 LnkSta: Speed 8GT/s (ok), Width x16 (ok)
 TrErr- Train- SlotClk+ DLActive- BWMgmt- ABWMgmt-
 DevCap2: Completion Timeout: Range BC, TimeoutDis+ NROPrPrP- LTR-
 10BitTagComp- 10BitTagReq- OBFF Not Supported, ExtFmt- EETLPPrefix-
 EmergencyPowerReduction Not Supported, EmergencyPowerReductionInit-
 FRS- TPHComp- ExtTPHComp-
 AtomicOpsCap: 32bit- 64bit- 128bitCAS-
 DevCtl2: Completion Timeout: 50us to 50ms, TimeoutDis- LTR- OBFF Disabled,
 AtomicOpsCtl: ReqEn-
 LnkCap2: Supported Link Speeds: 2.5-8GT/s, Crosslink- Retimer- 2Retimers- DRS-
 LnkCtl2: Target Link Speed: 8GT/s, EnterCompliance- SpeedDis-
 Transmit Margin: Normal Operating Range, EnterModifiedCompliance- ComplianceSOS-
 Compliance De-emphasis: -6dB
 LnkSta2: Current De-emphasis Level: -6dB, EqualizationComplete+ EqualizationPhase1+
 EqualizationPhase2+ EqualizationPhase3+ LinkEqualizationRequest-
 Retimer- 2Retimers- CrosslinkRes: unsupported
 Capabilities: [100 v1] Advanced Error Reporting
 UESta: DLP- SDES- TLP- FCP- CmpltTO- CmpltAbrt- UnxCmplt- RxOF- MalfTLP- ECRC- UnsupReq- ACSViol-
 UEMsk: DLP- SDES- TLP- FCP- CmpltTO- CmpltAbrt- UnxCmplt- RxOF- MalfTLP- ECRC- UnsupReq- ACSViol-
 UESvrt: DLP+ SDES+ TLP- FCP+ CmpltTO- CmpltAbrt- UnxCmplt- RxOF+ MalfTLP+ ECRC- UnsupReq- ACSViol-
 CESta: RxErr- BadTLP- BadDLLP- Rollover- Timeout- AdvNonFatalErr+
 CEMsk: RxErr- BadTLP- BadDLLP- Rollover- Timeout- AdvNonFatalErr+
 AERCap: First Error Pointer: 00, ECRCGenCap- ECRCGenEn- ECRCChkCap- ECRCChkEn-
 MultHdrRecCap- MultHdrRecEn- TLPPfxPres- HdrLogCap-
 HeaderLog: 00000000 00000000 00000000 00000000
 Capabilities: [1c0 v1] Secondary PCI Express
 LnkCtl3: LnkEquIntrruptEn- PerformEqu-
 LaneErrStat: 0
 Kernel driver in use: mqnic

The device driver also prints out some PCIe-related information when it attaches to the device, to save the trouble of running lspci:

[349.460705] mqnic 0000:81:00.0: mqnic PCI probe
[349.460712] mqnic 0000:81:00.0: Vendor: 0x1234
[349.460715] mqnic 0000:81:00.0: Device: 0x1001
[349.460717] mqnic 0000:81:00.0: Subsystem vendor: 0x1c2c
[349.460719] mqnic 0000:81:00.0: Subsystem device: 0xa00e
[349.460721] mqnic 0000:81:00.0: Class: 0x020000
[349.460723] mqnic 0000:81:00.0: PCI ID: 0000:81:00.0
[349.460730] mqnic 0000:81:00.0: Max payload size: 512 bytes
[349.460733] mqnic 0000:81:00.0: Max read request size: 512 bytes
[349.460735] mqnic 0000:81:00.0: Link capability: gen 3 x16
[349.460737] mqnic 0000:81:00.0: Link status: gen 3 x16
[349.460739] mqnic 0000:81:00.0: Relaxed ordering: enabled
[349.460740] mqnic 0000:81:00.0: Phantom functions: disabled
[349.460742] mqnic 0000:81:00.0: Extended tags: enabled
[349.460744] mqnic 0000:81:00.0: No snoop: enabled
[349.460745] mqnic 0000:81:00.0: NUMA node: 1
[349.460753] mqnic 0000:81:00.0: 126.016 Gb/s available PCIe bandwidth (8.0 GT/s PCIe x16 link)
[349.460767] mqnic 0000:81:00.0: enabling device (0000 -> 0002)
[349.460802] mqnic 0000:81:00.0: Control BAR size: 16777216
[349.462723] mqnic 0000:81:00.0: Configured 32 IRQs

Note that lspci reports LnkSta: Speed 8GT/s (ok), Width x16 (ok), indicating that the link is running at the max supported speed and max supported link width. If one of those is reported as (degraded), then further investigation is required. If (ok) or (degraded) is not shown, then compare LnkSta with LnkCap to see if LnkSta reports lower values. In this case, lspci reports LnkCap: Port #0, Speed 8GT/s, Width x16, which matches LnkSta. It also reports MSI: Enable+ Count=32/32, indicating that all 32 MSI channels are active. Some motherboards do not fully implement MSI and limit devices to a single channel. Eventually, Corundum will migrate to MSI-X to mitigate this issue, as well as support more interrupt channels. Also note that lspci reports MaxPayload 512 bytes—this is the largest that I have seen so far (on AMD EPYC), most modern systems report 256 bytes. Obviously, the larger, the better in terms of PCIe overhead.

Non-uniform memory access (NUMA) is another potential pitfall to be aware of. Systems with multiple CPU sockets will generally have at least one NUMA node associated with each socket, and some CPUs, like AMD EPYC, have internal NUMA nodes even with a single CPU. For best performance, any processes that access the NIC should be pinned to the NIC’s local NUMA node. If packets are stored in memory located on a different NUMA node, then there will be a performance penalty associated with the NIC accessing that memory via QPI, UPI, etc. Use numactl -s to get a list of all physical CPUs and NUMA nodes on the system. If only one node is listed, then no binding is required. If you’re running a CPU with internal NUMA nodes such as AMD EPYC, make sure that BIOS is set up to expose the internal NUMA nodes. The NUMA node associated with the network interface is shown both in the lspci and driver output output (NUMA node: 3), and it can also be read from sysfs (/sys/class/net/<dev>/device/numa_node). Use numactl -l -N <node> <command> to run programs on a specified NUMA node, for example, numactl -l -N 3 iperf3 -s. Recent versions of numactl also support automatically determining the NUMA node from the network device name, so in this case numactl -l -N netdev:enp129s0 iperf3 -s would run iperf on the NUMA node that enp129s0 is associated with. It’s important to make sure that both the client and the server are run on the correct NUMA node, so it’s probably a better idea to manually run iperf3 -s under numactl than to run iperf3 as a system service that could potentially run on any NUMA node. On Intel CPUs, PCM [https://github.com/opcm/pcm] can be used to monitor QPI/UPI traffic to confirm that processes are bound to the correct NUMA nodes.

It’s also advisable to go into BIOS setup and disable any power-management features to get the system into its highest-performance state.

Notes on the performance evaluation for the FCCM paper: the servers used are Dell R540 machines with dual Intel Xeon 6138 CPUs and all memory channels populated, and lspci reports MaxPayload 256 bytes. The machines have two NUMA nodes, so only one CPU is used for performance evaluation to prevent traffic from traversing the UPI link. On these machines, a single iperf process would run at 20-30 Gbps with 1500 byte MTU, or 40-50 Gbps with 9000 byte MTU. The Corundum design for those tests was configured with 8192 TX queues and 256 RX queues.

5. Porting

This guide is a high-level overview for how to port Corundum to new hardware. In general, this guide only applies to FPGA families that are already supported by Corundum, new FPGA families can require significant interfacing changes, especially for the PCI express interface as this can vary significantly between different FPGA families.

The only interfaces that the Corundum datapath requires are the PCI express interface and the Ethernet interfaces. Ancillary features such as firmware updates, persistent MAC addresses, and optical module communication are optional—the core datapath will still function if these features are not implemented. In general the PCI express and Ethernet interfaces are dependent almost completely on the FPGA family, while ancillary features tend to be much more board-dependent.

5.1. Preparation

Before porting Corundum to a new board, it is recommended to create example designs for both verilog-ethernet and verilog-pcie for the target board. The verilog-ethernet design will bring up the Ethernet interfaces at 10 Gbps and ensures the transceivers, reference clocks, and module control pins are properly configured for the Ethernet interfaces to operate. Some boards may require additional code to configure clocking logic to supply the proper reference clocks to the transceivers on the FPGA, which will generally be one of 156.25 MHz, 161.1328125 MHz, 322.265625 MHz, or 644.53125 MHz. The verilog-pcie design brings up the PCI express interface, validating that all of the pin assignments and transceiver site locations are correct. Once both of these designs are working, then porting corundum is straightforward.

5.2. Porting Corundum

Start by making a copy of a Corundum design that targets a similar board. Priority goes to a chip in the same family, then similar ancillary interfaces.

5.2.1. Board ID

Each board should have a unique board ID specified in mqnic_hw.h. These IDs are used by the driver for any board-specific initialization and interfacing. These IDs are arbitrary, but making something relatively predictable is a good idea to reduce the possibility of collisions. Most of the current IDs are a combination of the PCIe vendor ID of the board manufacturer, combined with a board-specific portion. For example, the board IDs for ExaNICs are simply the original ExaNIC PCIe VID and PID, and the Xilinx board IDs are a combination of the Xilinx PCIe VID, the part series (7 for 7 series, 8 for UltraScale, 9 for UltraScale+, etc.) and the hex version of the board part number (VCU108 = 6c, VCU1525 = 5f5, etc.). Pick a board ID, add it to mqnic_hw.h, and set the BOARD_ID parameter in fpga_core.v.

5.2.2. FPGA ID

The FPGA ID is used by the firmware update tool as a simple sanity check to prevent firmware for a different board from being loaded accidentally. Set the FPGA_ID parameter in fpga_core.v to the JTAG ID of the FPGA on the board. The IDs are located in fpga_id.h/fpga_id.c. If you do not want to implement the firmware update feature, FPGA_ID can be set to 0.

5.2.3. PCIe interface

Ensure that the PCIe hard IP core settings are correct for the target board. In many cases, the default settings are correct, but in some cases the transceiver sites need to be changed. Edit the TCL file appropriately, or generate the IP in vivado and extract the TCL commands from the Vivado journal file. If you previously ported the verilog-pcie design, then the settings can be copied over, with the PCIe IDs, BARs, and MSI settings configured appropriately.

Check that the BAR0_APERTURE setting and PCIE_AXIS settings in fpga.v and fpga_core.v match the PCIe core configuration.

5.2.4. Ethernet interfaces

For 100G interfaces, use Xilinx CMAC instances. A free license can be generated on the Xilinx website. The cores must be configured for CAUI-4. Select the appropriate reference clock and transceiver sites for the interfaces on the board. It may be necessary to adjust the CMAC site selections depending on which transceiver sites are used. Implement the design, open the implemented design, check the relative positions of the transceiver sites and CMAC sites, and adjust as appropriate. You can actually look at any synthesized or implemented design for the same chip to look at the relative positions of the sites.

For 10G or 25G interfaces, you can either use the MAC modules from verilog-ethernet or Xilinx-provided MAC modules. For the included MACs, the main thing to adjust is the gtwizard instance. This needs to be set up to use the correct transceiver sites and reference clock inputs. The internal interface must be the 64 bit asynchronous gearbox. Check the connection ordering; the gtwizard instance is always in the order of the site names, but this may not match the board, and connections may need to be re-ordered to match. In particular, double check that the RX clocks are connected correctly.

Update the interfaces between fpga.v and fpga_core.v to match the module configuration. Update the code in fpga_core.v to connect the PHYs in fpga.v to the appropriate MACs in fpga_core.v. Also set IF_COUNT and PORTS_PER_IF appropriately in fpga_core.v.

5.2.5. I2C interfaces

MAC address EEPROMs and optical modules are accessed via I2C. This is highly board-dependent. On some boards, there is a single I2C interface and a number of I2C multiplexers to connect everything. On other boards, each optical module has a dedicated I2C interface. On other boards, the I2C bus sits behind a board management controller. The core datapath will work fine without setting up I2C, but having the I2C buses operational can be a useful debugging feature. If I2C access is not required, simply do not implement the registers and ensure that the selected board ID does not correspond to any I2C init code in mqnic_i2c.c.

All corundum designs that directly connect I2C interfaces to the FPGA pins make use of bit-bang I2C support in the Linux kernel. There are a set of registers set aside for controlling up to four I2C buses in mqnic_hw.h. These should be appropriately implemented in the NIC CSR register space in fpga_core.v. Driver code also needs to be added to mqnic_i2c.c to initialize everything appropriately based on the board ID.

5.2.6. Flash access

Firmware updates require access to the FPGA configuration flash. Depending on the flash type, this either requires connections to dedicated pins via specific device primitives, normal FPGA IO pins, or both. The flash interface is a very simple bit-bang interface that simply exposes these pins over PCIe via NIC CSR register space. The register definitions are in mqnic_hw.h. Take a look at existing designs that implement QSPI or BPI flash and implement the same register configuration in fpga_core.v. If firmware update support is not required, simply do not implement the flash register block.

5.2.7. Module control pins

Optical modules have several low-speed control pins in addition to the I2C interface. For DAC cables, these pins have no effect, but for AOC cables or optical modules, these pins are very important. Specifically, SFP+ and SFP28 modules need to have the correct level on tx_disable in order to turn the laser on. Similarly, QSFP+ and QSFP28 modules need to have the reset and lpmode pins set correctly. These pins can be statically tied off with the modules enabled, or they can be exposed to the driver via standard registers specified in mqnic_hw.h and implemented in the NIC CSRs in fpga_core.v.

6. Persistent MAC Addresses

When registering network interfaces with the operating system, the driver must provide a MAC address for each interface. Ensuring that the configured MAC addresses are unique and consistent across driver reloads requires binding the addresses to the hardware in some way, usually through the use of some form of nonvolatile memory. It is relatively common for FPGA boards to provide small I2C EEPROMs for storing this sort of information. On other boards, the MAC address can be read out from the board management controller. If the driver fails to read a valid MAC address, it will fall back to using a randomly-generated MAC address. See the Device list for a summary of how persistent MAC addresses are implemented on each board. Boards that have pre-programmed MAC addresses should work “out of the box”. However, boards that include blank EEPROMs need to have a MAC address written into the EEPROM for this functionality to work.

6.1. Programming I2C EEPROM via kernel module

The driver registers all on-card I2C devices via the Linux I2C subsystem. Therefore, the MAC address EEPROM appears in sysfs, and a MAC address can easily be written using dd. Note that accessing the EEPROM is a little bit different on each board.

After loading the driver, the device can be accessed either directly (/sys/bus/pci/devices/0000:xx:00.0/) or from the corresponding network interface (/sys/class/net/eth0/device/) or miscdev (/sys/class/misc/mqnic0/device/). See the table below for the sysfs paths for each board. Note that the I2C bus numbers will vary. Also note that optical module I2C interfaces are registered as EEPROMs with I2C address 0x50, so ensure you have the correct EEPROM by dumping the contents with xxd or a hex editor before programming it.

After determining the sysfs path and picking a MAC address, run a command similar to this one to program the MAC address into the EEPROM:

echo 02 aa bb 00 00 00 | xxd -r -p - | dd bs=1 count=6 of=/sys/class/net/eth0/device/i2c-4/4-0074/channel-2/7-0054/eeprom

After reloading the driver, the interfaces should use the new MAC address:

14: enp1s0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000
 link/ether 02:aa:bb:00:00:00 brd ff:ff:ff:ff:ff:ff
15: enp1s0d1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000
 link/ether 02:aa:bb:00:00:01 brd ff:ff:ff:ff:ff:ff

	Manufacturer

	Board

	sysfs path 1

	Alpha Data

	ADM-PCIE-9V3

	i2c-X/X-0050/eeprom 3

	Exablaze

	ExaNIC X10 2

	i2c-X/X-0050/eeprom 3

	Exablaze

	ExaNIC X25 2

	i2c-X/X-0050/eeprom 3

	Xilinx

	VCU108

	i2c-X/X-0075/channel-3/Y-0054/eeprom

	Xilinx

	VCU118

	i2c-X/X-0075/channel-3/Y-0054/eeprom

	Xilinx

	VCU1525

	i2c-X/X-0074/channel-2/Y-0054/eeprom

	Xilinx

	ZCU106

	i2c-X/X-0074/channel-0/Y-0054/eeprom

Notes:
* 1 X and Y are i2c bus numbers that will vary
* 2 Card should come pre-programmed with a base MAC address
* 3 Optical module I2C interfaces may appear exactly the same way; confirm correct EEPROM by reading the contents with xxd or a hex editor.

7. Operations

This is a list of all of the operations involved in sending and receiving packets, across both hardware and software.

7.1. Packet transmission

	linux: The Linux kernel calls mqnic_start_xmit() (via ndo_start_xmit()) with an sk_buff for transmission

	mqnic_start_xmit() (mqnic_tx.c): The driver determines the destination transmit queue with skb_get_queue_mapping

	mqnic_start_xmit() (mqnic_tx.c): The driver marks the sk_buff for timestamping, if requested

	mqnic_start_xmit() (mqnic_tx.c): The driver generates the hardware IP checksum command and writes it into the descriptor

	mqnic_map_skb() (mqnic_tx.c): The driver writes a reference to the sk_buff into ring->tx_info

	mqnic_map_skb() (mqnic_tx.c): The driver generates DMA mappings for the sk_buff (skb_frag_dma_map()/dma_map_single()) and builds the descriptor

	mqnic_start_xmit() (mqnic_tx.c): The driver enqueues the packet by incrementing its local copy of the producer pointer

	mqnic_start_xmit() (mqnic_tx.c): At the end of a batch of packets, the driver writes the updated producer pointer to the NIC via MMIO

	queue_manager s_axil_*: The MMIO write arrives at the queue manager via AXI lite

	queue_manager m_axis_doorbell_*: The queue manager updates the producer pointer and generates a doorbell event

	tx_scheduler_rr s_axis_doorbell_*: The doorbell event arrives at the port schedulers

	tx_scheduler_rr: The scheduler marks the queue as active and schedules it if necessary

	tx_scheduler_rr: The scheduler decides to send a packet

	tx_scheduler_rr m_axis_tx_req_*: The scheduler generates a transmit request

	tx_engine s_axis_tx_req_*: The transmit request arrives at the transmit engine

	tx_engine m_axis_desc_req_*: The transmit engine issues a descriptor request

	desc_fetch s_axis_desc_req_*: The descriptor request arrives at the descriptor fetch module

	desc_fetch m_axis_desc_dequeue_req_*: The descriptor fetch module issues a dequeue request to the queue manager

	queue_manager s_axis_dequeue_req_*: The dequeue request arrives at the queue manager module

	queue_manager: If the queue is not empty, the queue manager starts a dequeue operation on the queue

	queue_manager m_axis_dequeue_resp_*: The queue manager sends a response containing the operation status and DMA address

	desc_fetch s_axis_desc_dequeue_resp_*: The response arrives at the descriptor fetch module

	desc_fetch m_axis_req_status_*: The descriptor module reports the descriptor fetch status

	desc_fetch m_axis_dma_read_desc_*: The descriptor module issues a DMA read request

	dma_if_pcie_rd s_axis_read_desc_*: The request arrives at the DMA read interface

	dma_if_pcie_rd: The DMA read interface issues a PCIe read request

	dma_if_pcie_rd: The read data comes back in a completion packet and is written to the descriptor fetch local DMA RAM

	dma_if_pcie_rd m_axis_read_desc_status_*: The DMA read interface issues a status message

	desc_fetch m_axis_desc_dequeue_commit_*: The descriptor fetch module issues a dequeue commit message

	queue_manager: The queue manager commits the dequeue operation and updates the consumer pointer

	desc_fetch dma_read_desc_*: The descriptor fetch module issues a read request to its internal DMA module

	desc_fetch m_axis_desc_*: The internal DMA module reads the descriptor and transfers it via AXI stream

	tx_engine: The descriptor arrives at the transmit engine

	tx_engine: The transmit engine stores the descriptor data

	tx_engine m_axis_dma_read_desc_*: The transmit engine issues a DMA read request

	dma_if_pcie_rd s_axis_read_desc_*: The request arrives at the DMA read interface

	dma_if_pcie_rd: The DMA read interface issues a PCIe read request

	dma_if_pcie_rd: The read data comes back in a completion packet and is written to the interface local DMA RAM

	dma_if_pcie_rd m_axis_read_desc_status_*: The DMA read interface issues a status message

	tx_engine m_axis_tx_desc_*: The transmit engine issues a read request to the interface DMA engine

	tx_engine m_axis_tx_csum_cmd_*: The transmit engine issues a transmit checksum command

	mqnic_interface_tx tx_axis_*: The interface DMA module reads the packet data from interface local DMA RAM and transfers it via AXI stream

	mqnic_egress: egress processing

	tx_checksum: The transmit checksum module computes and inserts the checksum

	mqnic_app_block s_axis_if_tx: data is presented to the application section

	mqnic_app_block m_axis_if_tx: data is returned from the application section

	mqnic_core: Data enters per-interface transmit FIFO module and is divided into per-port, per-traffic-class FIFOs

	mqnic_app_block s_axis_sync_tx: data is presented to the application section

	mqnic_app_block m_axis_sync_tx: data is returned from the application section

	mqnic_core: Data enters per-port transmit async FIFO module and is transferred to MAC TX clock domain

	mqnic_app_block s_axis_direct_tx: data is presented to the application section

	mqnic_app_block m_axis_direct_tx: data is returned from the application section

	mqnic_l2_egress: layer 2 egress processing

	mqnic_core: data leaves through transmit streaming interfaces

	Packet is transmitted and timestamped by MAC

	mqnic_core: timestamp and TX tag arrive through TX completion streaming interfaces

	mqnic_app_block s_axis_direct_tx_cpl: TX completion is presented to the application section

	mqnic_app_block m_axis_direct_tx_cpl: TX completion is returned from the application section

	mqnic_core: TX completion enters per-port async FIFO module and is transferred to core clock domain

	mqnic_app_block s_axis_sync_tx_cpl: TX completion is presented to the application section

	mqnic_app_block m_axis_sync_tx_cpl: TX completion is returned from the application section

	mqnic_core: TX completion enters per-interface transmit FIFO module and is placed into per-port FIFOs, then aggregated into a single stream

	mqnic_app_block s_axis_if_tx_cpl: TX completion is presented to the application section

	mqnic_app_block m_axis_if_tx_cpl: TX completion is returned from the application section

	tx_engine: TX completion arrives at the transmit engine

	tx_engine m_axis_cpl_req_*: The transmit engine issues a completion write request

	cpl_write: The completion write module writes the completion data into its local DMA RAM

	cpl_write m_axis_cpl_enqueue_req_*: The completion write module issues an enqueue request to the completion queue manager

	cpl_queue_manager m_axis_enqueue_req_*: The enqueue request arrives at the completion queue manager module

	cpl_queue_manager: If the queue is not full, the queue manager starts an enqueue operation on the queue

	cpl_queue_manager m_axis_enqueue_resp_*: The completion queue manager sends a response containing the operation status and DMA address

	cpl_write: The response arrives at the completion write module

	cpl_write m_axis_req_status_*: The completion write module reports the completion write status

	desc_fetch m_axis_dma_write_desc_*: The completion write module issues a DMA write request

	dma_if_pcie_wr s_axis_write_desc_*: The request arrives at the DMA write interface

	dma_if_pcie_wr: The DMA write interface reads the completion data from the completion write module local DMA RAM

	dma_if_pcie_wr: The DMA write interface issues a PCIe write request

	dma_if_pcie_wr m_axis_write_desc_status_*: The DMA write interface issues a status message

	cpl_write m_axis_desc_enqueue_commit_*: The completion write module issues an enqueue commit message

	cpl_queue_manager: The completion queue manager commits the enqueue operation and updates the producer pointer

	cpl_queue_manager m_axis_event_*: The completion queue manager issues an event, if armed

	cpl_write: The event arrives at the completion write module

	cpl_write: The completion write module writes the event data into its local DMA RAM

	cpl_write m_axis_cpl_enqueue_req_*: The completion write module issues an enqueue request to the completion queue manager

	cpl_queue_manager s_axis_enqueue_req_*: The enqueue request arrives at the completion queue manager module

	cpl_queue_manager: If the queue is not full, the queue manager starts an enqueue operation on the queue

	cpl_queue_manager m_axis_enqueue_resp_*: The completion queue manager sends a response containing the operation status and DMA address

	cpl_write s_axis_cpl_enqueue_resp_*: The response arrives at the completion write module

	cpl_write m_axis_req_status_*: The completion write module reports the completion write status

	desc_fetch m_axis_dma_write_desc_*: The completion write module issues a DMA write request

	dma_if_pcie_wr s_axis_write_desc_*: The request arrives at the DMA write interface

	dma_if_pcie_wr: The DMA write interface reads the event data from the completion write module local DMA RAM

	dma_if_pcie_wr: The DMA write interface issues a PCIe write request

	dma_if_pcie_wr m_axis_write_desc_status_*: The DMA write interface issues a status message

	cpl_write m_axis_desc_enqueue_commit_*: The completion write module issues an enqueue commit message

	cpl_queue_manager: The completion queue manager commits the enqueue operation and updates the producer pointer

	cpl_queue_manager m_axis_event_*: The completion queue manager issues an interrupt, if armed

	linux: The Linux kernel calls mqnic_irq_handler()

	mqnic_irq_handler() (mqnic_irq.c): The driver calls the EQ handler via the notifier chain (atomic_notifier_call_chain())

	mqnic_eq_int() (mqnic_eq.c): The driver calls mqnic_process_eq()

	mqnic_process_eq() (mqnic_eq.c): The driver processes the event queue, which calls the appropriate handler (mqnic_tx_irq())

	mqnic_tx_irq() (mqnic_tx.c): The driver enables NAPI polling on the queue (napi_schedule_irqoff())

	mqnic_eq_int() (mqnic_eq.c): The driver rearms the EQ (mqnic_arm_eq())

	NAPI: The Linux kernel calls mqnic_poll_tx_cq()

	mqnic_poll_tx_cq() (mqnic_tx.c): The driver calls mqnic_process_tx_cq()

	mqnic_process_tx_cq() (mqnic_tx.c): The driver reads the completion queue producer pointer from the NIC

	mqnic_process_tx_cq() (mqnic_tx.c): The driver reads the completion record

	mqnic_process_tx_cq() (mqnic_tx.c): The driver reads the sk_buff from ring->tx_info

	mqnic_process_tx_cq() (mqnic_tx.c): The driver completes the transmit timestamp operation

	mqnic_process_tx_cq() (mqnic_tx.c): The driver calls mqnic_free_tx_desc()

	mqnic_free_tx_desc() (mqnic_tx.c): The driver unmaps the sk_buff (dma_unmap_single()/dma_unmap_page())

	mqnic_free_tx_desc() (mqnic_tx.c): The driver frees the sk_buff (napi_consume_skb())

	mqnic_process_tx_cq() (mqnic_tx.c): The driver dequeues the completion record by incrementing the completion queue consumer pointer

	mqnic_process_tx_cq() (mqnic_tx.c): The driver writes the updated consumer pointer via MMIO

	mqnic_process_tx_cq() (mqnic_tx.c): The driver reads the queue consumer pointer from the NIC

	mqnic_process_tx_cq() (mqnic_tx.c): The driver increments the ring consumer pointer for in-order freed descriptors

	mqnic_process_tx_cq() (mqnic_tx.c): The driver wakes the queue if it was stopped (netif_tx_wake_queue())

	mqnic_poll_tx_cq() (mqnic_tx.c): The driver disables NAPI polling, when idle (napi_complete())

	mqnic_poll_tx_cq() (mqnic_tx.c): The driver rearms the CQ (mqnic_arm_cq())

7.2. Packet reception

init:

	mqnic_activate_rx_ring() (mqnic_rx.c): The driver calls mqnic_refill_rx_buffers()

	mqnic_refill_rx_buffers() (mqnic_rx.c): The driver calls mqnic_prepare_rx_desc() for each empty location in the ring

	mqnic_prepare_rx_desc() (mqnic_rx.c): The driver allocates memory pages (dev_alloc_pages())

	mqnic_prepare_rx_desc() (mqnic_rx.c): The driver maps the pages (dev_alloc_pages())

	mqnic_prepare_rx_desc() (mqnic_rx.c): The driver writes a pointer to the page struct in ring->rx_info

	mqnic_prepare_rx_desc() (mqnic_rx.c): The driver writes a descriptor with the DMA pointer and length

	mqnic_refill_rx_buffers() (mqnic_rx.c): The driver enqueues the descriptor by incrementing its local copy of the producer pointer

	mqnic_refill_rx_buffers() (mqnic_rx.c): At the end of the loop, the driver writes the updated producer pointer to the NIC via MMIO

receive:

	Packet is received and timestamped by MAC

	mqnic_core: data enters through receive streaming interfaces

	mqnic_l2_ingress: layer 2 ingress processing

	mqnic_app_block s_axis_direct_rx: data is presented to the application section

	mqnic_app_block m_axis_direct_rx: data is returned from the application section

	mqnic_core: Data enters per-port receive async FIFO module and is transferred to core clock domain

	mqnic_app_block s_axis_sync_rx: data is presented to the application section

	mqnic_app_block m_axis_sync_rx: data is returned from the application section

	mqnic_core: Data enters per-interface receive FIFO module and is placed into per-port FIFOs, then aggregated into a single stream

	mqnic_app_block s_axis_if_rx: data is presented to the application section

	mqnic_app_block m_axis_if_rx: data is returned from the application section

	mqnic_ingress: ingress processing

	rx_hash: The receive hash module computes the packet flow hash

	rx_checksum: The receive checksum module computes the packet payload checksum

	mqnic_interface_rx: A receive request is generated

	rx_engine: The receive hash arrives at the receive engine

	rx_engine: The receive checksum arrives at the receive engine

	rx_engine: The receive request arrives at the receive engine

	rx_engine m_axis_rx_desc_*: The receive engine issues a write request to the interface DMA engine

	mqnic_interface_rx rx_axis_*: The interface DMA module writes the packet data from AXI stream to the interface local DMA RAM

	rx_engine m_axis_desc_req_*: The receive engine issues a descriptor request

	desc_fetch: The descriptor request arrives at the descriptor fetch module

	desc_fetch m_axis_desc_dequeue_req_*: The descriptor fetch module issues a dequeue request to the queue manager

	queue_manager s_axis_dequeue_req_*: The dequeue request arrives at the queue manager module

	queue_manager: If the queue is not empty, the queue manager starts a dequeue operation on the queue

	queue_manager m_axis_dequeue_resp_*: The queue manager sends a response containing the operation status and DMA address

	desc_fetch m_axis_desc_dequeue_resp_*: The response arrives at the descriptor fetch module

	desc_fetch m_axis_req_status_*: The descriptor module reports the descriptor fetch status

	desc_fetch m_axis_dma_read_desc_*: The descriptor module issues a DMA read request

	dma_if_pcie_us_rd s_axis_read_desc_*: The request arrives at the DMA read interface

	dma_if_pcie_us_rd: The DMA read interface issues a PCIe read request

	dma_if_pcie_us_rd: The read data comes back in a completion packet and is written to the descriptor fetch local DMA RAM

	dma_if_pcie_us_rd m_axis_read_desc_status_*: The DMA read interface issues a status message

	desc_fetch m_axis_desc_dequeue_commit_*: The descriptor fetch module issues a dequeue commit message

	queue_manager: The queue manager commits the dequeue operation and updates the consumer pointer

	desc_fetch dma_read_desc_*: The descriptor fetch module issues a read request to its internal DMA module

	desc_fetch m_axis_desc_*: The internal DMA module reads the descriptor and transfers it via AXI stream

	rx_engine: The descriptor arrives at the receive engine

	rx_engine: The receive engine stores the descriptor data

	rx_engine m_axis_dma_write_desc_*: The receive engine issues a DMA write request

	dma_if_pcie_us_wr s_axis_write_desc_*: The request arrives at the DMA write interface

	dma_if_pcie_us_wr: The DMA write interface reads the packet data from the interface local DMA RAM

	dma_if_pcie_us_wr: The DMA write interface issues a PCIe write request

	dma_if_pcie_us_wr m_axis_write_desc_status_*: The DMA write interface issues a status message

	rx_engine m_axis_cpl_req_*: The receive engine issues a completion write request

	cpl_write: The completion write module writes the completion data into its local DMA RAM

	cpl_write m_axis_cpl_enqueue_req_*: The completion write module issues an enqueue request to the completion queue manager

	cpl_queue_manager s_axis_enqueue_req_*: The enqueue request arrives at the completion queue manager module

	cpl_queue_manager: If the queue is not full, the queue manager starts an enqueue operation on the queue

	cpl_queue_manager m_axis_enqueue_resp_*: The completion queue manager sends a response containing the operation status and DMA address

	cpl_write s_axis_cpl_enqueue_resp_*: The response arrives at the completion write module

	cpl_write m_axis_req_status_*: The completion write module reports the completion write status

	desc_fetch m_axis_dma_write_desc_*: The completion write module issues a DMA write request

	dma_if_pcie_us_wr s_axis_write_desc_*: The request arrives at the DMA write interface

	dma_if_pcie_us_wr: The DMA write interface reads the completion data from the completion write module local DMA RAM

	dma_if_pcie_us_wr: The DMA write interface issues a PCIe write request

	dma_if_pcie_us_wr m_axis_write_desc_status_*: The DMA write interface issues a status message

	cpl_write m_axis_desc_enqueue_commit_*: The completion write module issues an enqueue commit message

	cpl_queue_manager: The completion queue manager commits the enqueue operation and updates the producer pointer

	cpl_queue_manager m_axis_event_*: The completion queue manager issues an event, if armed

	cpl_write: The event arrives at the completion write module

	cpl_write: The completion write module writes the event data into its local DMA RAM

	cpl_write m_axis_cpl_enqueue_req_*: The completion write module issues an enqueue request to the completion queue manager

	cpl_queue_manager s_axis_enqueue_req_*: The enqueue request arrives at the completion queue manager module

	cpl_queue_manager: If the queue is not full, the queue manager starts an enqueue operation on the queue

	cpl_queue_manager m_axis_enqueue_resp_*: The completion queue manager sends a response containing the operation status and DMA address

	cpl_write s_axis_cpl_enqueue_resp_*: The response arrives at the completion write module

	cpl_write m_axis_req_status_*: The completion write module reports the completion write status

	desc_fetch m_axis_dma_write_desc_*: The completion write module issues a DMA write request

	dma_if_pcie_us_wr s_axis_write_desc_*: The request arrives at the DMA write interface

	dma_if_pcie_us_wr: The DMA write interface reads the event data from the completion write module local DMA RAM

	dma_if_pcie_us_wr: The DMA write interface issues a PCIe write request

	dma_if_pcie_us_wr m_axis_write_desc_status_*: The DMA write interface issues a status message

	cpl_write m_axis_desc_enqueue_commit_*: The completion write module issues an enqueue commit message

	cpl_queue_manager: The completion queue manager commits the enqueue operation and updates the producer pointer

	cpl_queue_manager m_axis_event_*: The completion queue manager issues an interrupt, if armed

	linux: The Linux kernel calls mqnic_irq_handler()

	mqnic_irq_handler() (mqnic_irq.c): The driver calls the EQ handler via the notifier chain (atomic_notifier_call_chain())

	mqnic_eq_int() (mqnic_eq.c): The driver calls mqnic_process_eq()

	mqnic_process_eq() (mqnic_eq.c): The driver processes the event queue, which calls the appropriate handler (mqnic_rx_irq())

	mqnic_rx_irq() (mqnic_rx.c): The driver enables NAPI polling on the queue (napi_schedule_irqoff())

	mqnic_eq_int() (mqnic_eq.c): The driver rearms the EQ (mqnic_arm_eq())

	NAPI: The Linux kernel calls mqnic_poll_rx_cq()

	mqnic_poll_rx_cq() (mqnic_rx.c): The driver calls mqnic_process_rx_cq()

	mqnic_process_rx_cq() (mqnic_rx.c): The driver reads the CQ producer pointer from the NIC

	mqnic_process_rx_cq() (mqnic_rx.c): The driver reads the completion record

	mqnic_process_rx_cq() (mqnic_rx.c): The driver fetches a fresh sk_buff (napi_get_frags())

	mqnic_process_rx_cq() (mqnic_rx.c): The driver sets the sk_buff hardware timestamp

	mqnic_process_rx_cq() (mqnic_rx.c): The driver unmaps the pages (dma_unmap_page())

	mqnic_process_rx_cq() (mqnic_rx.c): The driver associates the pages with the sk_buff (__skb_fill_page_desc())

	mqnic_process_rx_cq() (mqnic_rx.c): The driver sets the sk_buff length

	mqnic_process_rx_cq() (mqnic_rx.c): The driver hands off the sk_buff to napi_gro_frags()

	mqnic_process_rx_cq() (mqnic_rx.c): The driver dequeues the completion record by incrementing the CQ consumer pointer

	mqnic_process_rx_cq() (mqnic_rx.c): The driver writes the updated CQ consumer pointer via MMIO

	mqnic_process_rx_cq() (mqnic_rx.c): The driver reads the queue consumer pointer from the NIC

	mqnic_process_rx_cq() (mqnic_rx.c): The driver increments the ring consumer pointer for in-order freed descriptors

	mqnic_process_rx_cq() (mqnic_rx.c): The driver calls mqnic_refill_rx_buffers()

	mqnic_refill_rx_buffers() (mqnic_rx.c): The driver calls mqnic_prepare_rx_desc() for each empty location in the ring

	mqnic_prepare_rx_desc() (mqnic_rx.c): The driver allocates memory pages (dev_alloc_pages())

	mqnic_prepare_rx_desc() (mqnic_rx.c): The driver maps the pages (dev_alloc_pages())

	mqnic_prepare_rx_desc() (mqnic_rx.c): The driver writes a pointer to the page struct in ring->rx_info

	mqnic_prepare_rx_desc() (mqnic_rx.c): The driver writes a descriptor with the DMA pointer and length

	mqnic_refill_rx_buffers() (mqnic_rx.c): The driver enqueues the descriptor by incrementing its local copy of the producer pointer

	mqnic_refill_rx_buffers() (mqnic_rx.c): At the end of the loop, the driver writes the updated producer pointer to the NIC via MMIO

	mqnic_poll_rx_cq() (mqnic_rx.c): The driver disables NAPI polling, when idle (napi_complete())

	mqnic_poll_rx_cq() (mqnic_rx.c): The driver rearms the CQ (mqnic_arm_cq())

8. Modules

Contents:

	8.1. Overview

	8.2. cpl_queue_manager

	8.3. cpl_write

	8.4. desc_fetch

	8.5. mqnic_app_block

	8.6. mqnic_core

	8.7. mqnic_core_axi

	8.8. mqnic_core_pcie

	8.9. mqnic_core_pcie_s10

	8.10. mqnic_core_pcie_us

	8.11. mqnic_egress

	8.12. mqnic_ingress

	8.13. mqnic_interface

	8.14. mqnic_interface_rx

	8.15. mqnic_interface_tx

	8.16. mqnic_l2_egress

	8.17. mqnic_l2_ingress

	8.18. mqnic_ptp

	8.19. mqnic_ptp_clock

	8.20. mqnic_ptp_perout

	8.21. mqnic_tx_scheduler_block

	8.22. queue_manager

	8.23. rx_checksum

	8.24. rx_engine

	8.25. rx_hash

	8.26. tx_checksum

	8.27. tx_engine

	8.28. tx_scheduler_rr

8.1. Overview

Corundum has several unique architectural features. First, hardware queue states are stored efficiently in FPGA block RAM, enabling support for thousands of individually-controllable queues. These queues are associated with interfaces, and each interface can have multiple ports, each with its own independent transmit scheduler. This enables extremely fine-grained control over packet transmission. The scheduler module is designed to be modified or swapped out completely to implement different transmit scheduling schemes, including experimental schedulers. Coupled with PTP time synchronization, this enables time-based scheduling, including high precision TDMA.

The design of Corundum is modular and highly parametrized. Many configuration and structural options can be set at synthesis time by Verilog parameters, including interface and port counts, queue counts, memory sizes, etc. These design parameters are exposed in configuration registers that the driver reads to determine the NIC configuration, enabling the same driver to support many different boards and configurations without modification.

8.1.1. High-level overview

[image: ../_images/corundum_block.svg]
Fig. 8.1 Block diagram of the Corundum NIC. PCIe HIP: PCIe hard IP core; AXIL M: AXI lite master; DMA IF: DMA interface; AXI M: AXI master; PHC: PTP hardware clock; TXQ: transmit queue manager; TXCQ: transmit completion queue manager; RXQ: receive queue manager; RXCQ: receive completion queue manager; EQ: event queue manager; MAC + PHY: Ethernet media access controller (MAC) and physical interface layer (PHY).

A block diagram of the Corundum NIC is shown in Fig. 8.1. At a high level, the NIC consists of several hierarchy levels. The top-level module primarily contains support and interfacing components. These components include the PCI express hard IP core and Ethernet interface components including MACs, PHYs, and associated serializers, along with an instance of an appropriate mqnic_core wrapper, which provides the DMA interface. This core module contains the PTP clock (mqnic_ptp), application section (mqnic_app_block), and one or more mqnic_interface module instances. Each interface module corresponds to an operating-system-level network interface (e.g. eth0), and contains the queue management logic, descriptor and completion handling logic, transmit schedulers, transmit and receive engines, transmit and receive datapaths, and a scratchpad RAM for temporarily storing incoming and outgoing packets during DMA operations. The queue management logic maintains the queue state for all of the NIC queues—transmit, transmit completion, receive, receive completion, and event queues.

For each interface, the transmit scheduler (mqnic_tx_scheduler_block) in the interface module decides which queues are designated for transmission. The transmit scheduler generates commands for the transmit engine, which coordinates operations on the transmit datapath. The scheduler module is a flexible functional block that can be modified or replaced to support arbitrary schedules, which may be event driven. The default implementation of the scheduler in tx_scheduler_rr is simple round robin. All ports associated with the same interface module share the same set of transmit queues and appear as a single, unified interface to the operating system. This enables flows to be migrated between ports or load-balanced across multiple ports by changing only the transmit scheduler settings without affecting the rest of the network stack. This dynamic, scheduler-defined mapping of queues to ports is a unique feature of Corundum that can enable research into new protocols and network architectures, including parallel networks and optically-switched networks.

In the receive direction, incoming packets pass through a flow hash module to determine the target receive queue and generate commands for the receive engine, which coordinates operations on the receive datapath. Because all ports in the same interface module share the same set of receive queues, incoming flows on different ports are merged together into the same set of queues.

An application block (mqnic_app_block) is provided for customization, including packet processing, routing, and in-network compute applications. The application block has connections to several different subsystems.

The components on the NIC are interconnected with several different interfaces including AXI lite, AXI stream, and a custom segmented memory interface for DMA operations. AXI lite is used for the control path from the driver to the NIC. It is used to initialize and configure the NIC components and to control the queue pointers during transmit and receive operations. AXI stream interfaces are used for transferring packetized data within the NIC. The segmented memory interface serves to connect the PCIe DMA interface to the NIC datapath and to the descriptor and completion handling logic.

The majority of the NIC logic runs in the PCIe user clock domain, which is nominally 250 MHz for all of the current design variants. Asynchronous FIFOs are used to interface with the MACs, which run in the serializer transmit and receive clock domains as appropriate—156.25 MHz for 10G, 390.625 MHz for 25G, and 322.265625 MHz for 100G.

8.2. cpl_queue_manager

cpl_queue_manager implements

8.3. cpl_write

cpl_write manages operations associated with completion writeback. It is responsible for enqueuing completion and event records into the completion queue managers and writing records into host memory via DMA.

8.4. desc_fetch

desc_fetch manages operations associated with fetching descriptors. It is responsible for dequeuing descriptors from the queue managers and reading descriptors from host memory via DMA.

8.5. mqnic_app_block

mqnic_app_block is the top-level block for application logic. It is instantiated in mqnic_core. This is a pluggable module, intended to be replaced by a customized implementation via the build system. See …. for more details.

A number of interfaces are provided:

	Clock and reset synchronous with core datapath

	Dedicated AXI-lite master interface for application control (s_axil_app_ctrl)

	AXI-lite slave interface for access to NIC control register space (m_axil_ctrl)

	Access to DMA subsystem (*_axis_*_dma_*_desc, *_dma_ram)

	Access to PTP subsystem (ptp_*)

	Direct, MAC-synchronous, lowest-latency streaming interface (*_axis_direct_*)

	Direct, datapath-synchronous, low-latency streaming interface (*_axis_sync_*)

	Interface-level streaming interface (*_axis_if_*)

	Statistics interface (m_axis_stat)

	GPIO and JTAG passthrough (gpio, jtag)

Packet data from the host passes through all three streaming interfaces on its way to the network, and vise-versa. The three interfaces are:

	_axis_direct_: Direct, MAC-synchronous, lowest-latency streaming interface. This interface is as close as possible to the main transmit and receive interfaces on mqnic_core, and is synchronous to the TX and RX clocks instead of the core clock. Enabled/bypassed via APP_AXIS_DIRECT_ENABLE in config.tcl.

	_axis_sync_: Direct, datapath-synchronous, low-latency streaming interface. This interface handles per-port data between the main transmit and receive FIFOs and the async FIFOs, and is synchronous to the core clock. Enabled/bypassed via APP_AXIS_SYNC_ENABLE in config.tcl.

	_axis_if_: Interface-level streaming interface. This interface handles aggregated interface-level data between the host and the main receive and transmit FIFOs, and is synchronous to the core clock. Enabled/bypassed via APP_AXIS_IF_ENABLE in config.tcl.

On the transmit path, data flows as follows:

	mqnic_interface_tx: data is read from host memory via DMA

	mqnic_egress: egress processing

	s_axis_if_tx: data is presented to the application section

	m_axis_if_tx: data is returned from the application section

	Data enters per-interface transmit FIFO module and is divided into per-port, per-traffic-class FIFOs

	s_axis_sync_tx: data is presented to the application section

	m_axis_sync_tx: data is returned from the application section

	Data enters per-port transmit async FIFO module and is transferred to MAC TX clock domain

	s_axis_direct_tx: data is presented to the application section

	m_axis_direct_tx: data is returned from the application section

	mqnic_l2_egress: layer 2 egress processing

	mqnic_core: data leaves through transmit streaming interfaces

	Packet is transmitted and timestamped by MAC

	mqnic_core: timestamp and TX tag arrive through TX completion streaming interfaces

	s_axis_direct_tx_cpl: TX completion is presented to the application section

	m_axis_direct_tx_cpl: TX completion is returned from the application section

	TX completion enters per-port async FIFO module and is transferred to core clock domain

	s_axis_sync_tx_cpl: TX completion is presented to the application section

	m_axis_sync_tx_cpl: TX completion is returned from the application section

	TX completion enters per-interface transmit FIFO module and is placed into per-port FIFOs, then aggregated into a single stream

	s_axis_if_tx_cpl: TX completion is presented to the application section

	m_axis_if_tx_cpl: TX completion is returned from the application section

	mqnic_interface_tx: Transmit operation is marked as completed, timestamp is included in completion record and sent to the host

On the receive path, data flows as follows:

	Packet is received and timestamped by MAC

	mqnic_core: data enters through receive streaming interfaces

	mqnic_l2_ingress: layer 2 ingress processing

	s_axis_direct_rx: data is presented to the application section

	m_axis_direct_rx: data is returned from the application section

	Data enters per-port receive async FIFO module and is transferred to core clock domain

	s_axis_sync_rx: data is presented to the application section

	m_axis_sync_rx: data is returned from the application section

	Data enters per-interface receive FIFO module and is placed into per-port FIFOs, then aggregated into a single stream

	s_axis_if_rx: data is presented to the application section

	m_axis_if_rx: data is returned from the application section

	mqnic_ingress: ingress processing

	mqnic_interface_rx: data is read from host memory via DMA

8.5.1. Parameters

	
IF_COUNT

	Interface count, default 1.

	
PORTS_PER_IF

	Ports per interface, default 1.

	
SCHED_PER_IF

	Schedulers per interface, default PORTS_PER_IF.

	
PORT_COUNT

	Total port count, must be set to IF_COUNT*PORTS_PER_IF.

	
CLK_PERIOD_NS_NUM

	Numerator of core clock period in ns, default 4.

	
CLK_PERIOD_NS_DENOM

	Denominator of core clock period in ns, default 1.

	
PTP_CLK_PERIOD_NS_NUM

	Numerator of PTP clock period in ns, default 4.

	
PTP_CLK_PERIOD_NS_DENOM

	Denominator of PTP clock period in ns, default 1.

	
PTP_TS_WIDTH

	PTP timestamp width, must be 96.

	
PTP_USE_SAMPLE_CLOCK

	Use external PTP sample clock, used to synchronize the PTP clock across clock domains. Default 0.

	
PTP_PORT_CDC_PIPELINE

	Output pipeline stages on PTP clock CDC module, default 0.

	
PTP_PEROUT_ENABLE

	Enable PTP period output module, default 0.

	
PTP_PEROUT_COUNT

	Number of PTP period output channels, default 1.

	
PTP_TS_ENABLE

	Enable PTP timestamping, default 1.

	
TX_TAG_WIDTH

	Transmit tag signal width, default 16.

	
MAX_TX_SIZE

	Maximum packet size on transmit path, default 9214.

	
MAX_RX_SIZE

	Maximum packet size on receive path, default 9214.

	
APP_ID

	Application ID, default 0.

	
APP_CTRL_ENABLE

	Enable application section control connection to core NIC registers, default 1.

	
APP_DMA_ENABLE

	Enable application section connection to DMA subsystem, default 1.

	
APP_AXIS_DIRECT_ENABLE

	Enable lowest-latency asynchronous streaming connection to application section, default 1

	
APP_AXIS_SYNC_ENABLE

	Enable low-latency synchronous streaming connection to application section, default 1

	
APP_AXIS_IF_ENABLE

	Enable interface-level streaming connection to application section, default 1

	
APP_STAT_ENABLE

	Enable application section connection to statistics collection subsystem, default 1

	
APP_GPIO_IN_WIDTH

	Application section GPIO input signal width, default 32

	
APP_GPIO_OUT_WIDTH

	Application section GPIO output signal width, default 32

	
DMA_ADDR_WIDTH

	DMA interface address signal width, default 64.

	
DMA_IMM_ENABLE

	DMA interface immediate enable, default 0.

	
DMA_IMM_WIDTH

	DMA interface immediate signal width, default 32.

	
DMA_LEN_WIDTH

	DMA interface length signal width, default 16.

	
DMA_TAG_WIDTH

	DMA interface tag signal width, default 16.

	
RAM_SEL_WIDTH

	Width of select signal per segment in DMA RAM interface, default 4.

	
RAM_ADDR_WIDTH

	Width of address signal for DMA RAM interface, default 16.

	
RAM_SEG_COUNT

	Number of segments in DMA RAM interface, default 2. Must be a power of 2, must be at least 2.

	
RAM_SEG_DATA_WIDTH

	Width of data signal per segment in DMA RAM interface, default 256*2/RAM_SEG_COUNT.

	
RAM_SEG_BE_WIDTH

	Width of byte enable signal per segment in DMA RAM interface, default RAM_SEG_DATA_WIDTH/8.

	
RAM_SEG_ADDR_WIDTH

	Width of address signal per segment in DMA RAM interface, default RAM_ADDR_WIDTH-$clog2(RAM_SEG_COUNT*RAM_SEG_BE_WIDTH).

	
RAM_PIPELINE

	Number of output pipeline stages in segmented DMA RAMs, default 2. Tune for best usage of block RAM cascade registers.

	
AXIL_APP_CTRL_DATA_WIDTH

	AXI lite application control data signal width, default AXIL_CTRL_DATA_WIDTH. Can be 32 or 64.

	
AXIL_APP_CTRL_ADDR_WIDTH

	AXI lite application control address signal width, default 16.

	
AXIL_APP_CTRL_STRB_WIDTH

	AXI lite application control byte enable signal width, must be set to AXIL_APP_CTRL_DATA_WIDTH/8.

	
AXIL_CTRL_DATA_WIDTH

	AXI lite control data signal width, default 32. Must be 32.

	
AXIL_CTRL_ADDR_WIDTH

	AXI lite control address signal width, default 16.

	
AXIL_CTRL_STRB_WIDTH

	AXI lite control byte enable signal width, must be set to AXIL_CTRL_DATA_WIDTH/8.

	
AXIS_DATA_WIDTH

	Asynchronous streaming interface tdata signal width, default 512.

	
AXIS_KEEP_WIDTH

	Asynchronous streaming interface tkeep signal width, must be set to AXIS_DATA_WIDTH/8.

	
AXIS_TX_USER_WIDTH

	Asynchronous streaming transmit interface tuser signal width, default TX_TAG_WIDTH + 1.

	
AXIS_RX_USER_WIDTH

	Asynchronous streaming receive interface tuser signal width, default (PTP_TS_ENABLE ? PTP_TS_WIDTH : 0) + 1.

	
AXIS_RX_USE_READY

	Use tready signal on RX interfaces, default 0. If set, logic will exert backpressure with tready instead of dropping packets when RX FIFOs are full.

	
AXIS_SYNC_DATA_WIDTH

	Synchronous streaming interface tdata signal width, default AXIS_DATA_WIDTH.

	
AXIS_SYNC_KEEP_WIDTH

	Synchronous streaming interface tkeep signal width, must be set to AXIS_SYNC_DATA_WIDTH/8.

	
AXIS_SYNC_TX_USER_WIDTH

	Synchronous streaming transmit interface tuser signal width, default AXIS_TX_USER_WIDTH.

	
AXIS_SYNC_RX_USER_WIDTH

	Synchronous streaming receive interface tuser signal width, default AXIS_RX_USER_WIDTH.

	
AXIS_IF_DATA_WIDTH

	Interface streaming interface tdata signal width, default AXIS_SYNC_DATA_WIDTH*2**$clog2(PORTS_PER_IF).

	
AXIS_IF_KEEP_WIDTH

	Interface streaming interface tkeep signal width, must be set to AXIS_IF_DATA_WIDTH/8.

	
AXIS_IF_TX_ID_WIDTH

	Interface transmit streaming interface tid signal width, default 12.

	
AXIS_IF_RX_ID_WIDTH

	Interface receive streaming interface tid signal width, default PORTS_PER_IF > 1 ? $clog2(PORTS_PER_IF) : 1.

	
AXIS_IF_TX_DEST_WIDTH

	Interface transmit streaming interface tdest signal width, default $clog2(PORTS_PER_IF)+4.

	
AXIS_IF_RX_DEST_WIDTH

	Interface receive streaming interface tdest signal width, default 8.

	
AXIS_IF_TX_USER_WIDTH

	Interface transmit streaming interface tuser signal width, default AXIS_SYNC_TX_USER_WIDTH.

	
AXIS_IF_RX_USER_WIDTH

	Interface receive streaming interface tuser signal width, default AXIS_SYNC_RX_USER_WIDTH.

	
STAT_ENABLE

	Enable statistics collection subsystem, default 1.

	
STAT_INC_WIDTH

	Statistics increment signal width, default 24.

	
STAT_ID_WIDTH

	Statistics ID signal width, default 12. Sets the number of statistics counters as 2**STAT_ID_WIDTH.

8.5.2. Ports

	
clk

	Logic clock. Most interfaces are synchronous to this clock.

	Signal

	Dir

	Width

	Description

	clk

	in

	1

	Logic clock

	
rst

	Logic reset, active high

	Signal

	Dir

	Width

	Description

	rst

	in

	1

	Logic reset, active high

	
s_axil_app_ctrl

	AXI-Lite slave interface (application control).

	Signal

	Dir

	Width

	Description

	s_axil_app_ctrl_awaddr

	in

	AXIL_APP_CTRL_ADDR_WIDTH

	Write address

	s_axil_app_ctrl_awprot

	in

	3

	Write protect

	s_axil_app_ctrl_awvalid

	in

	1

	Write address valid

	s_axil_app_ctrl_awready

	out

	1

	Write address ready

	s_axil_app_ctrl_wdata

	in

	AXIL_APP_CTRL_DATA_WIDTH

	Write data

	s_axil_app_ctrl_wstrb

	in

	AXIL_APP_CTRL_STRB_WIDTH

	Write data strobe

	s_axil_app_ctrl_wvalid

	in

	1

	Write data valid

	s_axil_app_ctrl_wready

	out

	1

	Write data ready

	s_axil_app_ctrl_bresp

	out

	2

	Write response status

	s_axil_app_ctrl_bvalid

	out

	1

	Write response valid

	s_axil_app_ctrl_bready

	in

	1

	Write response ready

	s_axil_app_ctrl_araddr

	in

	AXIL_APP_CTRL_ADDR_WIDTH

	Read address

	s_axil_app_ctrl_arprot

	in

	3

	Read protect

	s_axil_app_ctrl_arvalid

	in

	1

	Read address valid

	s_axil_app_ctrl_arready

	out

	1

	Read address ready

	s_axil_app_ctrl_rdata

	out

	AXIL_APP_CTRL_DATA_WIDTH

	Read response data

	s_axil_app_ctrl_rresp

	out

	2

	Read response status

	s_axil_app_ctrl_rvalid

	out

	1

	Read response valid

	s_axil_app_ctrl_rready

	in

	1

	Read response ready

	
m_axil_ctrl

	AXI-Lite master interface (control). This interface provides access to the main NIC control register space.

	Signal

	Dir

	Width

	Description

	m_axil_ctrl_awaddr

	in

	AXIL_CTRL_ADDR_WIDTH

	Write address

	m_axil_ctrl_awprot

	in

	3

	Write protect

	m_axil_ctrl_awvalid

	in

	1

	Write address valid

	m_axil_ctrl_awready

	out

	1

	Write address ready

	m_axil_ctrl_wdata

	in

	AXIL_CTRL_DATA_WIDTH

	Write data

	m_axil_ctrl_wstrb

	in

	AXIL_CTRL_STRB_WIDTH

	Write data strobe

	m_axil_ctrl_wvalid

	in

	1

	Write data valid

	m_axil_ctrl_wready

	out

	1

	Write data ready

	m_axil_ctrl_bresp

	out

	2

	Write response status

	m_axil_ctrl_bvalid

	out

	1

	Write response valid

	m_axil_ctrl_bready

	in

	1

	Write response ready

	m_axil_ctrl_araddr

	in

	AXIL_CTRL_ADDR_WIDTH

	Read address

	m_axil_ctrl_arprot

	in

	3

	Read protect

	m_axil_ctrl_arvalid

	in

	1

	Read address valid

	m_axil_ctrl_arready

	out

	1

	Read address ready

	m_axil_ctrl_rdata

	out

	AXIL_CTRL_DATA_WIDTH

	Read response data

	m_axil_ctrl_rresp

	out

	2

	Read response status

	m_axil_ctrl_rvalid

	out

	1

	Read response valid

	m_axil_ctrl_rready

	in

	1

	Read response ready

	
m_axis_ctrl_dma_read_desc

	DMA read descriptor output (control)

	Signal

	Dir

	Width

	Description

	m_axis_ctrl_dma_read_desc_dma_addr

	out

	DMA_ADDR_WIDTH

	DMA address

	m_axis_ctrl_dma_read_desc_ram_sel

	out

	RAM_SEL_WIDTH

	RAM select

	m_axis_ctrl_dma_read_desc_ram_addr

	out

	RAM_ADDR_WIDTH

	RAM address

	m_axis_ctrl_dma_read_desc_len

	out

	DMA_LEN_WIDTH

	Transfer length

	m_axis_ctrl_dma_read_desc_tag

	out

	DMA_TAG_WIDTH

	Transfer tag

	m_axis_ctrl_dma_read_desc_valid

	out

	1

	Request valid

	m_axis_ctrl_dma_read_desc_ready

	in

	1

	Request ready

	
s_axis_ctrl_dma_read_desc_status

	DMA read descriptor status input (control)

	Signal

	Dir

	Width

	Description

	s_axis_ctrl_dma_read_desc_status_tag

	in

	DMA_TAG_WIDTH

	Status tag

	s_axis_ctrl_dma_read_desc_status_error

	in

	4

	Status error code

	s_axis_ctrl_dma_read_desc_status_valid

	in

	1

	Status valid

	
m_axis_ctrl_dma_write_desc

	DMA write descriptor output (control)

	Signal

	Dir

	Width

	Description

	m_axis_ctrl_dma_write_desc_dma_addr

	out

	DMA_ADDR_WIDTH

	DMA address

	m_axis_ctrl_dma_write_desc_ram_sel

	out

	RAM_SEL_WIDTH

	RAM select

	m_axis_ctrl_dma_write_desc_ram_addr

	out

	RAM_ADDR_WIDTH

	RAM address

	m_axis_ctrl_dma_write_desc_imm

	out

	DMA_IMM_WIDTH

	Immediate

	m_axis_ctrl_dma_write_desc_imm_en

	out

	1

	Immediate enable

	m_axis_ctrl_dma_write_desc_len

	out

	DMA_LEN_WIDTH

	Transfer length

	m_axis_ctrl_dma_write_desc_tag

	out

	DMA_TAG_WIDTH

	Transfer tag

	m_axis_ctrl_dma_write_desc_valid

	out

	1

	Request valid

	m_axis_ctrl_dma_write_desc_ready

	in

	1

	Request ready

	
s_axis_ctrl_dma_write_desc_status

	DMA write descriptor status input (control)

	Signal

	Dir

	Width

	Description

	s_axis_ctrl_dma_write_desc_status_tag

	in

	DMA_TAG_WIDTH

	Status tag

	s_axis_ctrl_dma_write_desc_status_error

	in

	4

	Status error code

	s_axis_ctrl_dma_write_desc_status_valid

	in

	1

	Status valid

	
m_axis_data_dma_read_desc

	DMA read descriptor output (data)

	Signal

	Dir

	Width

	Description

	m_axis_data_dma_read_desc_dma_addr

	out

	DMA_ADDR_WIDTH

	DMA address

	m_axis_data_dma_read_desc_ram_sel

	out

	RAM_SEL_WIDTH

	RAM select

	m_axis_data_dma_read_desc_ram_addr

	out

	RAM_ADDR_WIDTH

	RAM address

	m_axis_data_dma_read_desc_len

	out

	DMA_LEN_WIDTH

	Transfer length

	m_axis_data_dma_read_desc_tag

	out

	DMA_TAG_WIDTH

	Transfer tag

	m_axis_data_dma_read_desc_valid

	out

	1

	Request valid

	m_axis_data_dma_read_desc_ready

	in

	1

	Request ready

	
s_axis_data_dma_read_desc_status

	DMA read descriptor status input (data)

	Signal

	Dir

	Width

	Description

	s_axis_data_dma_read_desc_status_tag

	in

	DMA_TAG_WIDTH

	Status tag

	s_axis_data_dma_read_desc_status_error

	in

	4

	Status error code

	s_axis_data_dma_read_desc_status_valid

	in

	1

	Status valid

	
m_axis_data_dma_write_desc

	DMA write descriptor output (data)

	Signal

	Dir

	Width

	Description

	m_axis_data_dma_write_desc_dma_addr

	out

	DMA_ADDR_WIDTH

	DMA address

	m_axis_data_dma_write_desc_ram_sel

	out

	RAM_SEL_WIDTH

	RAM select

	m_axis_data_dma_write_desc_ram_addr

	out

	RAM_ADDR_WIDTH

	RAM address

	m_axis_data_dma_write_desc_imm

	out

	DMA_IMM_WIDTH

	Immediate

	m_axis_data_dma_write_desc_imm_en

	out

	1

	Immediate enable

	m_axis_data_dma_write_desc_len

	out

	DMA_LEN_WIDTH

	Transfer length

	m_axis_data_dma_write_desc_tag

	out

	DMA_TAG_WIDTH

	Transfer tag

	m_axis_data_dma_write_desc_valid

	out

	1

	Request valid

	m_axis_data_dma_write_desc_ready

	in

	1

	Request ready

	
s_axis_data_dma_write_desc_status

	DMA write descriptor status input (data)

	Signal

	Dir

	Width

	Description

	s_axis_data_dma_write_desc_status_tag

	in

	DMA_TAG_WIDTH

	Status tag

	s_axis_data_dma_write_desc_status_error

	in

	4

	Status error code

	s_axis_data_dma_write_desc_status_valid

	in

	1

	Status valid

	
ctrl_dma_ram

	DMA RAM interface (control)

	Signal

	Dir

	Width

	Description

	ctrl_dma_ram_wr_cmd_sel

	in

	RAM_SEG_COUNT*RAM_SEL_WIDTH

	Write command select

	ctrl_dma_ram_wr_cmd_be

	in

	RAM_SEG_COUNT*RAM_SEG_BE_WIDTH

	Write command byte enable

	ctrl_dma_ram_wr_cmd_addr

	in

	RAM_SEG_COUNT*RAM_SEG_ADDR_WIDTH

	Write command address

	ctrl_dma_ram_wr_cmd_data

	in

	RAM_SEG_COUNT*RAM_SEG_DATA_WIDTH

	Write command data

	ctrl_dma_ram_wr_cmd_valid

	in

	RAM_SEG_COUNT

	Write command valid

	ctrl_dma_ram_wr_cmd_ready

	out

	RAM_SEG_COUNT

	Write command ready

	ctrl_dma_ram_wr_done

	out

	RAM_SEG_COUNT

	Write done

	ctrl_dma_ram_rd_cmd_sel

	in

	RAM_SEG_COUNT*RAM_SEL_WIDTH

	Read command select

	ctrl_dma_ram_rd_cmd_addr

	in

	RAM_SEG_COUNT*RAM_SEG_ADDR_WIDTH

	Read command address

	ctrl_dma_ram_rd_cmd_valid

	in

	RAM_SEG_COUNT

	Read command valid

	ctrl_dma_ram_rd_cmd_ready

	out

	RAM_SEG_COUNT

	Read command ready

	ctrl_dma_ram_rd_resp_data

	out

	RAM_SEG_COUNT*RAM_SEG_DATA_WIDTH

	Read response data

	ctrl_dma_ram_rd_resp_valid

	out

	RAM_SEG_COUNT

	Read response valid

	ctrl_dma_ram_rd_resp_ready

	in

	RAM_SEG_COUNT

	Read response ready

	
data_dma_ram

	DMA RAM interface (data)

	Signal

	Dir

	Width

	Description

	data_dma_ram_wr_cmd_sel

	in

	RAM_SEG_COUNT*RAM_SEL_WIDTH

	Write command select

	data_dma_ram_wr_cmd_be

	in

	RAM_SEG_COUNT*RAM_SEG_BE_WIDTH

	Write command byte enable

	data_dma_ram_wr_cmd_addr

	in

	RAM_SEG_COUNT*RAM_SEG_ADDR_WIDTH

	Write command address

	data_dma_ram_wr_cmd_data

	in

	RAM_SEG_COUNT*RAM_SEG_DATA_WIDTH

	Write command data

	data_dma_ram_wr_cmd_valid

	in

	RAM_SEG_COUNT

	Write command valid

	data_dma_ram_wr_cmd_ready

	out

	RAM_SEG_COUNT

	Write command ready

	data_dma_ram_wr_done

	out

	RAM_SEG_COUNT

	Write done

	data_dma_ram_rd_cmd_sel

	in

	RAM_SEG_COUNT*RAM_SEL_WIDTH

	Read command select

	data_dma_ram_rd_cmd_addr

	in

	RAM_SEG_COUNT*RAM_SEG_ADDR_WIDTH

	Read command address

	data_dma_ram_rd_cmd_valid

	in

	RAM_SEG_COUNT

	Read command valid

	data_dma_ram_rd_cmd_ready

	out

	RAM_SEG_COUNT

	Read command ready

	data_dma_ram_rd_resp_data

	out

	RAM_SEG_COUNT*RAM_SEG_DATA_WIDTH

	Read response data

	data_dma_ram_rd_resp_valid

	out

	RAM_SEG_COUNT

	Read response valid

	data_dma_ram_rd_resp_ready

	in

	RAM_SEG_COUNT

	Read response ready

	
ptp

	PTP clock connections.

	Signal

	Dir

	Width

	Description

	ptp_clk

	in

	1

	PTP clock

	ptp_rst

	in

	1

	PTP reset

	ptp_sample_clk

	in

	1

	PTP sample clock

	ptp_pps

	in

	1

	PTP pulse-per-second (synchronous to ptp_clk)

	ptp_ts_96

	in

	PTP_TS_WIDTH

	current PTP time (synchronous to ptp_clk)

	ptp_ts_step

	in

	1

	PTP clock step (synchronous to ptp_clk)

	ptp_sync_pps

	in

	1

	PTP pulse-per-second (synchronous to clk)

	ptp_sync_ts_96

	in

	PTP_TS_WIDTH

	current PTP time (synchronous to clk)

	ptp_sync_ts_step

	in

	1

	PTP clock step (synchronous to clk)

	ptp_perout_locked

	in

	PTP_PEROUT_COUNT

	PTP period output locked

	ptp_perout_error

	in

	PTP_PEROUT_COUNT

	PTP period output error

	ptp_perout_pulse

	in

	PTP_PEROUT_COUNT

	PTP period output pulse

	
direct_tx_clk

	Transmit clocks for direct asynchronous streaming interfaces, one per port

	Signal

	Dir

	Width

	Description

	direct_tx_clk

	in

	PORT_COUNT

	Transmit clock

	
direct_tx_rst

	Transmit resets for direct asynchronous streaming interfaces, one per port

	Signal

	Dir

	Width

	Description

	direct_tx_rst

	in

	PORT_COUNT

	Transmit reset

	
s_axis_direct_tx

	Streaming transmit data from host, one AXI stream interface per port. Lowest latency interface, synchronous with transmit clock.

	Signal

	Dir

	Width

	Description

	s_axis_direct_tx_tdata

	in

	PORT_COUNT*AXIS_DATA_WIDTH

	Streaming data

	s_axis_direct_tx_tkeep

	in

	PORT_COUNT*AXIS_KEEP_WIDTH

	Byte enable

	s_axis_direct_tx_tvalid

	in

	PORT_COUNT

	Data valid

	s_axis_direct_tx_tready

	out

	PORT_COUNT

	Ready for data

	s_axis_direct_tx_tlast

	in

	PORT_COUNT

	End of frame

	s_axis_direct_tx_tuser

	in

	PORT_COUNT*AXIS_TX_USER_WIDTH

	Sideband data

s_axis_direct_tx_tuser bits, per port

	Bit

	Name

	Width

	Description

	0

	bad_frame

	1

	Invalid frame

	TX_TAG_WIDTH:1

	tx_tag

	TX_TAG_WIDTH

	Transmit tag

	
m_axis_direct_tx

	Streaming transmit data towards network, one AXI stream interface per port. Lowest latency interface, synchronous with transmit clock.

	Signal

	Dir

	Width

	Description

	m_axis_direct_tx_tdata

	out

	PORT_COUNT*AXIS_DATA_WIDTH

	Streaming data

	m_axis_direct_tx_tkeep

	out

	PORT_COUNT*AXIS_KEEP_WIDTH

	Byte enable

	m_axis_direct_tx_tvalid

	out

	PORT_COUNT

	Data valid

	m_axis_direct_tx_tready

	in

	PORT_COUNT

	Ready for data

	m_axis_direct_tx_tlast

	out

	PORT_COUNT

	End of frame

	m_axis_direct_tx_tuser

	out

	PORT_COUNT*AXIS_TX_USER_WIDTH

	Sideband data

m_axis_direct_tx_tuser bits, per port

	Bit

	Name

	Width

	Description

	0

	bad_frame

	1

	Invalid frame

	TX_TAG_WIDTH:1

	tx_tag

	TX_TAG_WIDTH

	Transmit tag

	
s_axis_direct_tx_cpl

	Transmit PTP timestamp from MAC, one AXI stream interface per port.

	Signal

	Dir

	Width

	Description

	s_axis_direct_tx_cpl_ts

	in

	PORT_COUNT*PTP_TS_WIDTH

	PTP timestamp

	s_axis_direct_tx_cpl_tag

	in

	PORT_COUNT*TX_TAG_WIDTH

	Transmit tag

	s_axis_direct_tx_cpl_valid

	in

	PORT_COUNT

	Transmit completion valid

	s_axis_direct_tx_cpl_ready

	out

	PORT_COUNT

	Transmit completion ready

	
m_axis_direct_tx_cpl

	Transmit PTP timestamp towards core logic, one AXI stream interface per port.

	Signal

	Dir

	Width

	Description

	s_axis_direct_tx_cpl_ts

	out

	PORT_COUNT*PTP_TS_WIDTH

	PTP timestamp

	s_axis_direct_tx_cpl_tag

	out

	PORT_COUNT*TX_TAG_WIDTH

	Transmit tag

	s_axis_direct_tx_cpl_valid

	out

	PORT_COUNT

	Transmit completion valid

	s_axis_direct_tx_cpl_ready

	in

	PORT_COUNT

	Transmit completion ready

	
direct_rx_clk

	Receive clocks for direct asynchronous streaming interfaces, one per port

	Signal

	Dir

	Width

	Description

	direct_rx_clk

	in

	PORT_COUNT

	Receive clock

	
direct_rx_rst

	Receive resets for direct asynchronous streaming interfaces, one per port

	Signal

	Dir

	Width

	Description

	direct_rx_rst

	in

	PORT_COUNT

	Receive reset

	
s_axis_direct_rx

	Streaming receive data from network, one AXI stream interface per port. Lowest latency interface, synchronous with receive clock.

	Signal

	Dir

	Width

	Description

	s_axis_direct_rx_tdata

	in

	PORT_COUNT*AXIS_DATA_WIDTH

	Streaming data

	s_axis_direct_rx_tkeep

	in

	PORT_COUNT*AXIS_KEEP_WIDTH

	Byte enable

	s_axis_direct_rx_tvalid

	in

	PORT_COUNT

	Data valid

	s_axis_direct_rx_tready

	out

	PORT_COUNT

	Ready for data

	s_axis_direct_rx_tlast

	in

	PORT_COUNT

	End of frame

	s_axis_direct_rx_tuser

	in

	PORT_COUNT*AXIS_RX_USER_WIDTH

	Sideband data

s_axis_direct_rx_tuser bits, per port

	Bit

	Name

	Width

	Description

	0

	bad_frame

	1

	Invalid frame

	PTP_TS_WIDTH:1

	ptp_ts

	PTP_TS_WIDTH

	PTP timestamp

	
m_axis_direct_rx

	Streaming receive data towards host, one AXI stream interface per port. Lowest latency interface, synchronous with receive clock.

	Signal

	Dir

	Width

	Description

	m_axis_direct_rx_tdata

	out

	PORT_COUNT*AXIS_DATA_WIDTH

	Streaming data

	m_axis_direct_rx_tkeep

	out

	PORT_COUNT*AXIS_KEEP_WIDTH

	Byte enable

	m_axis_direct_rx_tvalid

	out

	PORT_COUNT

	Data valid

	m_axis_direct_rx_tready

	in

	PORT_COUNT

	Ready for data

	m_axis_direct_rx_tlast

	out

	PORT_COUNT

	End of frame

	m_axis_direct_rx_tuser

	out

	PORT_COUNT*AXIS_RX_USER_WIDTH

	Sideband data

m_axis_direct_rx_tuser bits, per port

	Bit

	Name

	Width

	Description

	0

	bad_frame

	1

	Invalid frame

	PTP_TS_WIDTH:1

	ptp_ts

	PTP_TS_WIDTH

	PTP timestamp

	
s_axis_sync_tx

	Streaming transmit data from host, one AXI stream interface per port. Low latency interface, synchronous with core clock.

	Signal

	Dir

	Width

	Description

	s_axis_sync_tx_tdata

	in

	PORT_COUNT*AXIS_SYNC_DATA_WIDTH

	Streaming data

	s_axis_sync_tx_tkeep

	in

	PORT_COUNT*AXIS_SYNC_KEEP_WIDTH

	Byte enable

	s_axis_sync_tx_tvalid

	in

	PORT_COUNT

	Data valid

	s_axis_sync_tx_tready

	out

	PORT_COUNT

	Ready for data

	s_axis_sync_tx_tlast

	in

	PORT_COUNT

	End of frame

	s_axis_sync_tx_tuser

	in

	PORT_COUNT*AXIS_SYNC_TX_USER_WIDTH

	Sideband data

s_axis_sync_tx_tuser bits, per port

	Bit

	Name

	Width

	Description

	0

	bad_frame

	1

	Invalid frame

	TX_TAG_WIDTH:1

	tx_tag

	TX_TAG_WIDTH

	Transmit tag

	
m_axis_sync_tx

	Streaming transmit data towards network, one AXI stream interface per port. Low latency interface, synchronous with core clock.

	Signal

	Dir

	Width

	Description

	m_axis_sync_tx_tdata

	out

	PORT_COUNT*AXIS_SYNC_DATA_WIDTH

	Streaming data

	m_axis_sync_tx_tkeep

	out

	PORT_COUNT*AXIS_SYNC_KEEP_WIDTH

	Byte enable

	m_axis_sync_tx_tvalid

	out

	PORT_COUNT

	Data valid

	m_axis_sync_tx_tready

	in

	PORT_COUNT

	Ready for data

	m_axis_sync_tx_tlast

	out

	PORT_COUNT

	End of frame

	m_axis_sync_tx_tuser

	out

	PORT_COUNT*AXIS_SYNC_TX_USER_WIDTH

	Sideband data

m_axis_sync_tx_tuser bits, per port

	Bit

	Name

	Width

	Description

	0

	bad_frame

	1

	Invalid frame

	TX_TAG_WIDTH:1

	tx_tag

	TX_TAG_WIDTH

	Transmit tag

	
s_axis_sync_tx_cpl

	Transmit PTP timestamp from MAC, one AXI stream interface per port.

	Signal

	Dir

	Width

	Description

	s_axis_sync_tx_cpl_ts

	in

	PORT_COUNT*PTP_TS_WIDTH

	PTP timestamp

	s_axis_sync_tx_cpl_tag

	in

	PORT_COUNT*TX_TAG_WIDTH

	Transmit tag

	s_axis_sync_tx_cpl_valid

	in

	PORT_COUNT

	Transmit completion valid

	s_axis_sync_tx_cpl_ready

	out

	PORT_COUNT

	Transmit completion ready

	
m_axis_sync_tx_cpl

	Transmit PTP timestamp towards core logic, one AXI stream interface per port.

	Signal

	Dir

	Width

	Description

	s_axis_sync_tx_cpl_ts

	out

	PORT_COUNT*PTP_TS_WIDTH

	PTP timestamp

	s_axis_sync_tx_cpl_tag

	out

	PORT_COUNT*TX_TAG_WIDTH

	Transmit tag

	s_axis_sync_tx_cpl_valid

	out

	PORT_COUNT

	Transmit completion valid

	s_axis_sync_tx_cpl_ready

	in

	PORT_COUNT

	Transmit completion ready

	
s_axis_sync_rx

	Streaming receive data from network, one AXI stream interface per port. Low latency interface, synchronous with core clock.

	Signal

	Dir

	Width

	Description

	s_axis_sync_rx_tdata

	in

	PORT_COUNT*AXIS_SYNC_DATA_WIDTH

	Streaming data

	s_axis_sync_rx_tkeep

	in

	PORT_COUNT*AXIS_SYNC_KEEP_WIDTH

	Byte enable

	s_axis_sync_rx_tvalid

	in

	PORT_COUNT

	Data valid

	s_axis_sync_rx_tready

	out

	PORT_COUNT

	Ready for data

	s_axis_sync_rx_tlast

	in

	PORT_COUNT

	End of frame

	s_axis_sync_rx_tuser

	in

	PORT_COUNT*AXIS_SYNC_RX_USER_WIDTH

	Sideband data

s_axis_sync_rx_tuser bits, per port

	Bit

	Name

	Width

	Description

	0

	bad_frame

	1

	Invalid frame

	PTP_TS_WIDTH:1

	ptp_ts

	PTP_TS_WIDTH

	PTP timestamp

	
m_axis_sync_rx

	Streaming receive data towards host, one AXI stream interface per port. Low latency interface, synchronous with core clock.

	Signal

	Dir

	Width

	Description

	m_axis_sync_rx_tdata

	out

	PORT_COUNT*AXIS_SYNC_DATA_WIDTH

	Streaming data

	m_axis_sync_rx_tkeep

	out

	PORT_COUNT*AXIS_SYNC_KEEP_WIDTH

	Byte enable

	m_axis_sync_rx_tvalid

	out

	PORT_COUNT

	Data valid

	m_axis_sync_rx_tready

	in

	PORT_COUNT

	Ready for data

	m_axis_sync_rx_tlast

	out

	PORT_COUNT

	End of frame

	m_axis_sync_rx_tuser

	out

	PORT_COUNT*AXIS_SYNC_RX_USER_WIDTH

	Sideband data

m_axis_sync_rx_tuser bits, per port

	Bit

	Name

	Width

	Description

	0

	bad_frame

	1

	Invalid frame

	PTP_TS_WIDTH:1

	ptp_ts

	PTP_TS_WIDTH

	PTP timestamp

	
s_axis_if_tx

	Streaming transmit data from host, one AXI stream interface per interface. Closest interface to host, synchronous with core clock.

	Signal

	Dir

	Width

	Description

	s_axis_if_tx_tdata

	in

	PORT_COUNT*AXIS_IF_DATA_WIDTH

	Streaming data

	s_axis_if_tx_tkeep

	in

	PORT_COUNT*AXIS_IF_KEEP_WIDTH

	Byte enable

	s_axis_if_tx_tvalid

	in

	PORT_COUNT

	Data valid

	s_axis_if_tx_tready

	out

	PORT_COUNT

	Ready for data

	s_axis_if_tx_tlast

	in

	PORT_COUNT

	End of frame

	s_axis_if_tx_tid

	in

	PORT_COUNT*AXIS_IF_TX_ID_WIDTH

	Source queue

	s_axis_if_tx_tdest

	in

	PORT_COUNT*AXIS_IF_TX_DEST_WIDTH

	Destination port

	s_axis_if_tx_tuser

	in

	PORT_COUNT*AXIS_IF_TX_USER_WIDTH

	Sideband data

s_axis_if_tx_tuser bits, per interface

	Bit

	Name

	Width

	Description

	0

	bad_frame

	1

	Invalid frame

	TX_TAG_WIDTH:1

	tx_tag

	TX_TAG_WIDTH

	Transmit tag

	
m_axis_if_tx

	Streaming transmit data towards network, one AXI stream interface per interface. Closest interface to host, synchronous with core clock.

	Signal

	Dir

	Width

	Description

	m_axis_if_tx_tdata

	out

	PORT_COUNT*AXIS_IF_DATA_WIDTH

	Streaming data

	m_axis_if_tx_tkeep

	out

	PORT_COUNT*AXIS_IF_KEEP_WIDTH

	Byte enable

	m_axis_if_tx_tvalid

	out

	PORT_COUNT

	Data valid

	m_axis_if_tx_tready

	in

	PORT_COUNT

	Ready for data

	m_axis_if_tx_tlast

	out

	PORT_COUNT

	End of frame

	m_axis_if_tx_tid

	out

	PORT_COUNT*AXIS_IF_TX_ID_WIDTH

	Source queue

	m_axis_if_tx_tdest

	out

	PORT_COUNT*AXIS_IF_TX_DEST_WIDTH

	Destination port

	m_axis_if_tx_tuser

	out

	PORT_COUNT*AXIS_IF_TX_USER_WIDTH

	Sideband data

m_axis_if_tx_tuser bits, per interface

	Bit

	Name

	Width

	Description

	0

	bad_frame

	1

	Invalid frame

	TX_TAG_WIDTH:1

	tx_tag

	TX_TAG_WIDTH

	Transmit tag

	
s_axis_if_tx_cpl

	Transmit PTP timestamp from MAC, one AXI stream interface per interface.

	Signal

	Dir

	Width

	Description

	s_axis_if_tx_cpl_ts

	in

	PORT_COUNT*PTP_TS_WIDTH

	PTP timestamp

	s_axis_if_tx_cpl_tag

	in

	PORT_COUNT*TX_TAG_WIDTH

	Transmit tag

	s_axis_if_tx_cpl_valid

	in

	PORT_COUNT

	Transmit completion valid

	s_axis_if_tx_cpl_ready

	out

	PORT_COUNT

	Transmit completion ready

	
m_axis_if_tx_cpl

	Transmit PTP timestamp towards core logic, one AXI stream interface per interface.

	Signal

	Dir

	Width

	Description

	s_axis_if_tx_cpl_ts

	out

	PORT_COUNT*PTP_TS_WIDTH

	PTP timestamp

	s_axis_if_tx_cpl_tag

	out

	PORT_COUNT*TX_TAG_WIDTH

	Transmit tag

	s_axis_if_tx_cpl_valid

	out

	PORT_COUNT

	Transmit completion valid

	s_axis_if_tx_cpl_ready

	in

	PORT_COUNT

	Transmit completion ready

	
s_axis_if_rx

	Streaming receive data from network, one AXI stream interface per interface. Closest interface to host, synchronous with core clock.

	Signal

	Dir

	Width

	Description

	s_axis_if_rx_tdata

	in

	PORT_COUNT*AXIS_IF_DATA_WIDTH

	Streaming data

	s_axis_if_rx_tkeep

	in

	PORT_COUNT*AXIS_IF_KEEP_WIDTH

	Byte enable

	s_axis_if_rx_tvalid

	in

	PORT_COUNT

	Data valid

	s_axis_if_rx_tready

	out

	PORT_COUNT

	Ready for data

	s_axis_if_rx_tlast

	in

	PORT_COUNT

	End of frame

	s_axis_if_rx_tid

	in

	PORT_COUNT*AXIS_IF_RX_ID_WIDTH

	Source port

	s_axis_if_rx_tdest

	in

	PORT_COUNT*AXIS_IF_RX_DEST_WIDTH

	Destination queue

	s_axis_if_rx_tuser

	in

	PORT_COUNT*AXIS_IF_RX_USER_WIDTH

	Sideband data

s_axis_if_rx_tuser bits, per interface

	Bit

	Name

	Width

	Description

	0

	bad_frame

	1

	Invalid frame

	PTP_TS_WIDTH:1

	ptp_ts

	PTP_TS_WIDTH

	PTP timestamp

	
m_axis_if_rx

	Streaming receive data towards host, one AXI stream interface per interface. Closest interface to host, synchronous with core clock.

	Signal

	Dir

	Width

	Description

	m_axis_if_rx_tdata

	out

	PORT_COUNT*AXIS_IF_DATA_WIDTH

	Streaming data

	m_axis_if_rx_tkeep

	out

	PORT_COUNT*AXIS_IF_KEEP_WIDTH

	Byte enable

	m_axis_if_rx_tvalid

	out

	PORT_COUNT

	Data valid

	m_axis_if_rx_tready

	in

	PORT_COUNT

	Ready for data

	m_axis_if_rx_tlast

	out

	PORT_COUNT

	End of frame

	m_axis_if_rx_tid

	out

	PORT_COUNT*AXIS_IF_RX_ID_WIDTH

	Source port

	m_axis_if_rx_tdest

	out

	PORT_COUNT*AXIS_IF_RX_DEST_WIDTH

	Destination queue

	m_axis_if_rx_tuser

	out

	PORT_COUNT*AXIS_IF_RX_USER_WIDTH

	Sideband data

m_axis_if_rx_tuser bits, per interface

	Bit

	Name

	Width

	Description

	0

	bad_frame

	1

	Invalid frame

	PTP_TS_WIDTH:1

	ptp_ts

	PTP_TS_WIDTH

	PTP timestamp

	
m_axis_stat

	Statistics increment output

	Signal

	Dir

	Width

	Description

	m_axis_stat_tdata

	in

	STAT_INC_WIDTH

	Statistic increment

	m_axis_stat_tid

	in

	STAT_ID_WIDTH

	Statistic ID

	m_axis_stat_tvalid

	in

	1

	Statistic valid

	m_axis_stat_tready

	out

	1

	Statistic ready

	
gpio

	Application section GPIO

	Signal

	Dir

	Width

	Description

	gpio_in

	in

	APP_GPIO_IN_WIDTH

	GPIO inputs

	gpio_out

	out

	APP_GPIO_OUT_WIDTH

	GPIO outputs

	
jtag

	Application section JTAG scan chain

	Signal

	Dir

	Width

	Description

	jtag_tdi

	in

	1

	JTAG TDI

	jtag_tdo

	out

	1

	JTAG TDO

	jtag_tms

	in

	1

	JTAG TMS

	jtag_tck

	in

	1

	JTAG TCK

8.6. mqnic_core

mqnic_core is the core integration-level module for mqnic for all host interfaces. Contains the interfaces, asynchronous FIFOs, PTP subsystem, statistics collection subsystem, and application block.

For maximum flexibility, this module does not contain the actual host-facing DMA engine, so a wrapper is required to provide the DMA engine with the proper host-facing interface. The available wrappers are:

	mqnic_core_pcie for PCI express

	mqnic_core_axi for AXI

mqnic_core integrates the following modules:

	stats_counter: statistics aggregation

	mqnic_ptp: PTP subsystem

	mqnic_interface: NIC interface

	mqnic_app_block: Application block

8.6.1. Parameters

	
FPGA_ID

	FPGA JTAG ID, default is 32'hDEADBEEF. Reported in Firmware ID register block.

	
FW_ID

	Firmware ID, default is 32'h00000000. Reported in Firmware ID register block.

	
FW_VER

	Firmware version, default is 32'h00_00_01_00. Reported in Firmware ID register block.

	
BOARD_ID

	Board ID, default is 16'h1234_0000. Reported in Firmware ID register block.

	
BOARD_VER

	Board version, default is 32'h01_00_00_00. Reported in Firmware ID register block.

	
BUILD_DATE

	Build date as a 32-bit unsigned Unix timestamp, default is 32'd602976000. Reported in Firmware ID register block.

	
GIT_HASH

	32 bits of the git commit hash, default is 32'hdce357bf. Reported in Firmware ID register block.

	
RELEASE_INFO

	Additional release info, default is 32'h00000000. Reported in Firmware ID register block.

	
IF_COUNT

	Interface count, default 1.

	
PORTS_PER_IF

	Ports per interface, default 1.

	
SCHED_PER_IF

	Schedulers per interface, default PORTS_PER_IF.

	
PORT_COUNT

	Total port count, must be set to IF_COUNT*PORTS_PER_IF.

	
CLK_PERIOD_NS_NUM

	Numerator of core clock period in ns, default 4.

	
CLK_PERIOD_NS_DENOM

	Denominator of core clock period in ns, default 1.

	
PTP_CLK_PERIOD_NS_NUM

	Numerator of PTP clock period in ns, default 4.

	
PTP_CLK_PERIOD_NS_DENOM

	Denominator of PTP clock period in ns, default 1.

	
PTP_TS_WIDTH

	PTP timestamp width, must be 96.

	
PTP_CLOCK_PIPELINE

	Output pipeline stages on PTP clock module, default 0.

	
PTP_CLOCK_CDC_PIPELINE

	Output pipeline stages on PTP clock CDC module, default 0.

	
PTP_USE_SAMPLE_CLOCK

	Use external PTP sample clock, used to synchronize the PTP clock across clock domains, default 0.

	
PTP_SEPARATE_RX_CLOCK

	Use rx_ptp_clk instead of rx_clk for providing current PTP time if set, default 0.

	
PTP_PORT_CDC_PIPELINE

	Output pipeline stages on PTP clock CDC module, default 0.

	
PTP_PEROUT_ENABLE

	Enable PTP period output module, default 0.

	
PTP_PEROUT_COUNT

	Number of PTP period output channels, default 1.

	
EVENT_QUEUE_OP_TABLE_SIZE

	Event queue manager operation table size, default 32.

	
TX_QUEUE_OP_TABLE_SIZE

	Transmit queue manager operation table size, default 32.

	
RX_QUEUE_OP_TABLE_SIZE

	Receive queue manager operation table size, default 32.

	
TX_CPL_QUEUE_OP_TABLE_SIZE

	Transmit completion queue operation table size, default TX_QUEUE_OP_TABLE_SIZE.

	
RX_CPL_QUEUE_OP_TABLE_SIZE

	Receive completion queue operation table size, default RX_QUEUE_OP_TABLE_SIZE.

	
EVENT_QUEUE_INDEX_WIDTH

	Event queue index width, default 5. Sets the number of event queues on each interfaces as 2**EVENT_QUEUE_INDEX_WIDTH.

	
TX_QUEUE_INDEX_WIDTH

	Transmit queue index width, default 13. Sets the number of transmit queues on each interfaces as 2**TX_QUEUE_INDEX_WIDTH.

	
RX_QUEUE_INDEX_WIDTH

	Receive queue index width, default 8. Sets the number of receive queues on each interfaces as 2**RX_QUEUE_INDEX_WIDTH.

	
TX_CPL_QUEUE_INDEX_WIDTH

	Transmit completion queue index width, default TX_QUEUE_INDEX_WIDTH. Sets the number of transmit completion queues on each interfaces as 2**TX_CPL_QUEUE_INDEX_WIDTH.

	
RX_CPL_QUEUE_INDEX_WIDTH

	Receive completion queue index width, default RX_QUEUE_INDEX_WIDTH. Sets the number of receive completion queues on each interfaces as 2**RX_CPL_QUEUE_INDEX_WIDTH.

	
EVENT_QUEUE_PIPELINE

	Event queue manager pipeline length, default 3. Tune for best usage of block RAM cascade registers for specified queue count.

	
TX_QUEUE_PIPELINE

	Transmit queue manager pipeline stages, default 3+(TX_QUEUE_INDEX_WIDTH > 12 ? TX_QUEUE_INDEX_WIDTH-12 : 0). Tune for best usage of block RAM cascade registers for specified queue count.

	
RX_QUEUE_PIPELINE

	Receive queue manager pipeline stages, default 3+(RX_QUEUE_INDEX_WIDTH > 12 ? RX_QUEUE_INDEX_WIDTH-12 : 0). Tune for best usage of block RAM cascade registers for specified queue count.

	
TX_CPL_QUEUE_PIPELINE

	Transmit completion queue manager pipeline stages, default TX_QUEUE_PIPELINE. Tune for best usage of block RAM cascade registers for specified queue count.

	
RX_CPL_QUEUE_PIPELINE

	Receive completion queue manager pipeline stages, default RX_QUEUE_PIPELINE. Tune for best usage of block RAM cascade registers for specified queue count.

	
TX_DESC_TABLE_SIZE

	Transmit engine descriptor table size, default 32.

	
RX_DESC_TABLE_SIZE

	Receive engine descriptor table size, default 32.

	
RX_INDIR_TBL_ADDR_WIDTH

	Receive indirection table size, default min(RX_QUEUE_INDEX_WIDTH, 8).

	
TX_SCHEDULER_OP_TABLE_SIZE

	Transmit scheduler operation table size, default TX_DESC_TABLE_SIZE.

	
TX_SCHEDULER_PIPELINE

	Transmit scheduler pipeline stages, default TX_QUEUE_PIPELINE. Tune for best usage of block RAM cascade registers for specified queue count.

	
TDMA_INDEX_WIDTH

	TDMA index width, default 6. Sets the number of TDMA timeslots as 2**TDMA_INDEX_WIDTH.

	
PTP_TS_ENABLE

	Enable PTP timestamping, default 1.

	
TX_CPL_ENABLE

	Enable transmit completions from MAC, default 1.

	
TX_CPL_FIFO_DEPTH

	Depth of transmit completion FIFO, default 32.

	
TX_TAG_WIDTH

	Transmit tag signal width, default $clog2(TX_DESC_TABLE_SIZE)+1.

	
TX_CHECKSUM_ENABLE

	Enable TCP/UDP checksum offloading on transmit path, default 1.

	
RX_HASH_ENABLE

	Enable Toeplitz flow hashing and receive side scaling for RX traffic, default 1.

	
RX_CHECKSUM_ENABLE

	Enable TCP/UDP checksum offloading on receive path, default 1

	
TX_FIFO_DEPTH

	Transmit FIFO depth in bytes, per output port, per traffic class, default 32768.

	
RX_FIFO_DEPTH

	Receive FIFO depth in bytes, per output port, default 32768.

	
MAX_TX_SIZE

	Maximum packet size on transmit path, default 9214.

	
MAX_RX_SIZE

	Maximum packet size on receive path, default 9214.

	
TX_RAM_SIZE

	Transmit scratchpad RAM size per interface, default 32768.

	
RX_RAM_SIZE

	Receive scratchpad RAM size per interface, default 32768.

	
DDR_CH

	Number of DDR memory interfaces, default 1.

	
DDR_ENABLE

	Enable DDR memory interfaces, default 0.

	
DDR_GROUP_SIZE

	DDR channel group size, default 1. All channels in each group share the same address space.

	
AXI_DDR_DATA_WIDTH

	DDR memory interface AXI data width, default 256.

	
AXI_DDR_ADDR_WIDTH

	DDR memory interface AXI address width, default 32.

	
AXI_DDR_STRB_WIDTH

	DDR memory interface AXI strobe width, default (AXI_DDR_DATA_WIDTH/8).

	
AXI_DDR_ID_WIDTH

	DDR memory interface AXI ID width, default 8.

	
AXI_DDR_AWUSER_ENABLE

	DDR memory interface AXI AWUSER signal enable, default 0.

	
AXI_DDR_AWUSER_WIDTH

	DDR memory interface AXI AWUSER signal width, default 1.

	
AXI_DDR_WUSER_ENABLE

	DDR memory interface AXI WUSER signal enable, default 0.

	
AXI_DDR_WUSER_WIDTH

	DDR memory interface AXI WUSER signal width, default 1.

	
AXI_DDR_BUSER_ENABLE

	DDR memory interface AXI BUSER signal enable, default 0.

	
AXI_DDR_BUSER_WIDTH

	DDR memory interface AXI BUSER signal width, default 1.

	
AXI_DDR_ARUSER_ENABLE

	DDR memory interface AXI ARUSER signal enable, default 0.

	
AXI_DDR_ARUSER_WIDTH

	DDR memory interface AXI ARUSER signal width, default 1.

	
AXI_DDR_RUSER_ENABLE

	DDR memory interface AXI RUSER signal enable, default 0.

	
AXI_DDR_RUSER_WIDTH

	DDR memory interface AXI RUSER signal width, default 1.

	
AXI_DDR_MAX_BURST_LEN

	DDR memory interface max AXI burst length, default 256.

	
AXI_DDR_NARROW_BURST

	DDR memory interface AXI narrow burst support, default 0.

	
AXI_DDR_FIXED_BURST

	DDR memory interface AXI fixed burst support, default 0.

	
AXI_DDR_WRAP_BURST

	DDR memory interface AXI wrap burst support, default 0.

	
HBM_CH

	Number of HBM memory interfaces, default 1.

	
HBM_ENABLE

	Enable HBM memory interfaces, default 0.

	
HBM_GROUP_SIZE

	HBM channel group size, default 1. All channels in each group share the same address space.

	
AXI_HBM_DATA_WIDTH

	HBM memory interface AXI data width, default 256.

	
AXI_HBM_AHBM_WIDTH

	HBM memory interface AXI address width, default 32.

	
AXI_HBM_STRB_WIDTH

	HBM memory interface AXI strobe width, default (AXI_HBM_DATA_WIDTH/8).

	
AXI_HBM_ID_WIDTH

	HBM memory interface AXI ID width, default 8.

	
AXI_HBM_AWUSER_ENABLE

	HBM memory interface AXI AWUSER signal enable, default 0.

	
AXI_HBM_AWUSER_WIDTH

	HBM memory interface AXI AWUSER signal width, default 1.

	
AXI_HBM_WUSER_ENABLE

	HBM memory interface AXI WUSER signal enable, default 0.

	
AXI_HBM_WUSER_WIDTH

	HBM memory interface AXI WUSER signal width, default 1.

	
AXI_HBM_BUSER_ENABLE

	HBM memory interface AXI BUSER signal enable, default 0.

	
AXI_HBM_BUSER_WIDTH

	HBM memory interface AXI BUSER signal width, default 1.

	
AXI_HBM_ARUSER_ENABLE

	HBM memory interface AXI ARUSER signal enable, default 0.

	
AXI_HBM_ARUSER_WIDTH

	HBM memory interface AXI ARUSER signal width, default 1.

	
AXI_HBM_RUSER_ENABLE

	HBM memory interface AXI RUSER signal enable, default 0.

	
AXI_HBM_RUSER_WIDTH

	HBM memory interface AXI RUSER signal width, default 1.

	
AXI_HBM_MAX_BURST_LEN

	HBM memory interface max AXI burst length, default 256.

	
AXI_HBM_NARROW_BURST

	HBM memory interface AXI narrow burst support, default 0.

	
AXI_HBM_FIXED_BURST

	HBM memory interface AXI fixed burst support, default 0.

	
AXI_HBM_WRAP_BURST

	HBM memory interface AXI wrap burst support, default 0.

	
APP_ID

	Application ID, default 0.

	
APP_ENABLE

	Enable application section, default 0.

	
APP_CTRL_ENABLE

	Enable application section control connection to core NIC registers, default 1.

	
APP_DMA_ENABLE

	Enable application section connection to DMA subsystem, default 1.

	
APP_AXIS_DIRECT_ENABLE

	Enable lowest-latency asynchronous streaming connection to application section, default 1

	
APP_AXIS_SYNC_ENABLE

	Enable low-latency synchronous streaming connection to application section, default 1

	
APP_AXIS_IF_ENABLE

	Enable interface-level streaming connection to application section, default 1

	
APP_STAT_ENABLE

	Enable application section connection to statistics collection subsystem, default 1

	
APP_GPIO_IN_WIDTH

	Application section GPIO input signal width, default 32

	
APP_GPIO_OUT_WIDTH

	Application section GPIO output signal width, default 32

	
DMA_ADDR_WIDTH

	DMA interface address signal width, default 64.

	
DMA_IMM_ENABLE

	DMA interface immediate enable, default 0.

	
DMA_IMM_WIDTH

	DMA interface immediate signal width, default 32.

	
DMA_LEN_WIDTH

	DMA interface length signal width, default 16.

	
DMA_TAG_WIDTH

	DMA interface tag signal width, default 16.

	
IF_RAM_SEL_WIDTH

	Width of interface-level select signal, default 1.

	
RAM_SEL_WIDTH

	Width of select signal per segment in DMA RAM interface, default $clog2(IF_COUNT+(APP_ENABLE && APP_DMA_ENABLE ? 1 : 0))+IF_RAM_SEL_WIDTH+1.

	
RAM_ADDR_WIDTH

	Width of address signal for DMA RAM interface, default $clog2(TX_RAM_SIZE > RX_RAM_SIZE ? TX_RAM_SIZE : RX_RAM_SIZE).

	
RAM_SEG_COUNT

	Number of segments in DMA RAM interface, default 2. Must be a power of 2, must be at least 2.

	
RAM_SEG_DATA_WIDTH

	Width of data signal per segment in DMA RAM interface, default 256*2/RAM_SEG_COUNT.

	
RAM_SEG_BE_WIDTH

	Width of byte enable signal per segment in DMA RAM interface, must be set to RAM_SEG_DATA_WIDTH/8.

	
RAM_SEG_ADDR_WIDTH

	Width of address signal per segment in DMA RAM interface, default RAM_ADDR_WIDTH-$clog2(RAM_SEG_COUNT*RAM_SEG_BE_WIDTH).

	
RAM_PIPELINE

	Number of output pipeline stages in segmented DMA RAMs, default 2. Tune for best usage of block RAM cascade registers.

	
MSI_COUNT

	Number of interrupt channels, default 32.

	
AXIL_CTRL_DATA_WIDTH

	AXI lite control data signal width, must be set to 32.

	
AXIL_CTRL_ADDR_WIDTH

	AXI lite control address signal width, default 16.

	
AXIL_CTRL_STRB_WIDTH

	AXI lite control byte enable signal width, must be set to AXIL_CTRL_DATA_WIDTH/8.

	
AXIL_IF_CTRL_ADDR_WIDTH

	AXI lite interface control address signal width, default AXIL_CTRL_ADDR_WIDTH-$clog2(IF_COUNT)

	
AXIL_CSR_ADDR_WIDTH

	AXI lite interface CSR address signal width, default AXIL_IF_CTRL_ADDR_WIDTH-5-$clog2((PORTS_PER_IF+3)/8)

	
AXIL_CSR_PASSTHROUGH_ENABLE

	Enable NIC control register space passthrough, default 0.

	
RB_NEXT_PTR

	Next pointer of last register block in the NIC-level CSR space, default 0.

	
AXIL_APP_CTRL_DATA_WIDTH

	AXI lite application control data signal width, default AXIL_CTRL_DATA_WIDTH. Can be 32 or 64.

	
AXIL_APP_CTRL_ADDR_WIDTH

	AXI lite application control address signal width, default 16.

	
AXIL_APP_CTRL_STRB_WIDTH

	AXI lite application control byte enable signal width, must be set to AXIL_APP_CTRL_DATA_WIDTH/8.

	
AXIS_DATA_WIDTH

	Streaming interface tdata signal width, default 512.

	
AXIS_KEEP_WIDTH

	Streaming interface tkeep signal width, must be set to AXIS_DATA_WIDTH/8.

	
AXIS_SYNC_DATA_WIDTH

	Synchronous streaming interface tdata signal width, default AXIS_DATA_WIDTH.

	
AXIS_IF_DATA_WIDTH

	Interface streaming interface tdata signal width, default AXIS_SYNC_DATA_WIDTH*2**$clog2(PORTS_PER_IF).

	
AXIS_TX_USER_WIDTH

	Transmit streaming interface tuser signal width, default TX_TAG_WIDTH + 1.

	
AXIS_RX_USER_WIDTH

	Receive streaming interface tuser signal width, default (PTP_TS_ENABLE ? PTP_TS_WIDTH : 0) + 1.

	
AXIS_RX_USE_READY

	Use tready signal on RX interfaces, default 0. If set, logic will exert backpressure with tready instead of dropping packets when RX FIFOs are full.

	
AXIS_TX_PIPELINE

	Number of stages in transmit path pipeline FIFO, default 0. Useful for SLR crossings.

	
AXIS_TX_FIFO_PIPELINE

	Number of output pipeline stages in transmit FIFO, default 2. Tune for best usage of block RAM cascade registers.

	
AXIS_TX_TS_PIPELINE

	Number of stages in transmit path PTP timestamp pipeline FIFO, default 0. Useful for SLR crossings.

	
AXIS_RX_PIPELINE

	Number of stages in receive path pipeline FIFO, default 0. Useful for SLR crossings.

	
AXIS_RX_FIFO_PIPELINE

	Number of output pipeline stages in receive FIFO, default 2. Tune for best usage of block RAM cascade registers.

	
STAT_ENABLE

	Enable statistics collection subsystem, default 1.

	
STAT_INC_WIDTH

	Statistics increment signal width, default 24.

	
STAT_ID_WIDTH

	Statistics ID signal width, default 12. Sets the number of statistics counters as 2**STAT_ID_WIDTH.

8.6.2. Ports

	
clk

	Logic clock. Most interfaces are synchronous to this clock.

	Signal

	Dir

	Width

	Description

	clk

	in

	1

	Logic clock

	
rst

	Logic reset, active high

	Signal

	Dir

	Width

	Description

	rst

	in

	1

	Logic reset, active high

	
s_axil_ctrl

	AXI-Lite slave interface (control). This interface provides access to the main NIC control register space.

	Signal

	Dir

	Width

	Description

	s_axil_ctrl_awaddr

	in

	AXIL_CTRL_ADDR_WIDTH

	Write address

	s_axil_ctrl_awprot

	in

	3

	Write protect

	s_axil_ctrl_awvalid

	in

	1

	Write address valid

	s_axil_ctrl_awready

	out

	1

	Write address ready

	s_axil_ctrl_wdata

	in

	AXIL_CTRL_DATA_WIDTH

	Write data

	s_axil_ctrl_wstrb

	in

	AXIL_CTRL_STRB_WIDTH

	Write data strobe

	s_axil_ctrl_wvalid

	in

	1

	Write data valid

	s_axil_ctrl_wready

	out

	1

	Write data ready

	s_axil_ctrl_bresp

	out

	2

	Write response status

	s_axil_ctrl_bvalid

	out

	1

	Write response valid

	s_axil_ctrl_bready

	in

	1

	Write response ready

	s_axil_ctrl_araddr

	in

	AXIL_CTRL_ADDR_WIDTH

	Read address

	s_axil_ctrl_arprot

	in

	3

	Read protect

	s_axil_ctrl_arvalid

	in

	1

	Read address valid

	s_axil_ctrl_arready

	out

	1

	Read address ready

	s_axil_ctrl_rdata

	out

	AXIL_CTRL_DATA_WIDTH

	Read response data

	s_axil_ctrl_rresp

	out

	2

	Read response status

	s_axil_ctrl_rvalid

	out

	1

	Read response valid

	s_axil_ctrl_rready

	in

	1

	Read response ready

	
s_axil_app_ctrl

	AXI-Lite slave interface (application control). This interface is directly passed through to the application section.

	Signal

	Dir

	Width

	Description

	s_axil_app_ctrl_awaddr

	in

	AXIL_APP_CTRL_ADDR_WIDTH

	Write address

	s_axil_app_ctrl_awprot

	in

	3

	Write protect

	s_axil_app_ctrl_awvalid

	in

	1

	Write address valid

	s_axil_app_ctrl_awready

	out

	1

	Write address ready

	s_axil_app_ctrl_wdata

	in

	AXIL_APP_CTRL_DATA_WIDTH

	Write data

	s_axil_app_ctrl_wstrb

	in

	AXIL_APP_CTRL_STRB_WIDTH

	Write data strobe

	s_axil_app_ctrl_wvalid

	in

	1

	Write data valid

	s_axil_app_ctrl_wready

	out

	1

	Write data ready

	s_axil_app_ctrl_bresp

	out

	2

	Write response status

	s_axil_app_ctrl_bvalid

	out

	1

	Write response valid

	s_axil_app_ctrl_bready

	in

	1

	Write response ready

	s_axil_app_ctrl_araddr

	in

	AXIL_APP_CTRL_ADDR_WIDTH

	Read address

	s_axil_app_ctrl_arprot

	in

	3

	Read protect

	s_axil_app_ctrl_arvalid

	in

	1

	Read address valid

	s_axil_app_ctrl_arready

	out

	1

	Read address ready

	s_axil_app_ctrl_rdata

	out

	AXIL_APP_CTRL_DATA_WIDTH

	Read response data

	s_axil_app_ctrl_rresp

	out

	2

	Read response status

	s_axil_app_ctrl_rvalid

	out

	1

	Read response valid

	s_axil_app_ctrl_rready

	in

	1

	Read response ready

	
m_axil_csr

	AXI-Lite master interface (passthrough for NIC control and status). This interface can be used to implement additional components in the main NIC control register space.

	Signal

	Dir

	Width

	Description

	m_axil_csr_awaddr

	in

	AXIL_CSR_ADDR_WIDTH

	Write address

	m_axil_csr_awprot

	in

	3

	Write protect

	m_axil_csr_awvalid

	in

	1

	Write address valid

	m_axil_csr_awready

	out

	1

	Write address ready

	m_axil_csr_wdata

	in

	AXIL_CTRL_DATA_WIDTH

	Write data

	m_axil_csr_wstrb

	in

	AXIL_CTRL_STRB_WIDTH

	Write data strobe

	m_axil_csr_wvalid

	in

	1

	Write data valid

	m_axil_csr_wready

	out

	1

	Write data ready

	m_axil_csr_bresp

	out

	2

	Write response status

	m_axil_csr_bvalid

	out

	1

	Write response valid

	m_axil_csr_bready

	in

	1

	Write response ready

	m_axil_csr_araddr

	in

	AXIL_CTRL_ADDR_WIDTH

	Read address

	m_axil_csr_arprot

	in

	3

	Read protect

	m_axil_csr_arvalid

	in

	1

	Read address valid

	m_axil_csr_arready

	out

	1

	Read address ready

	m_axil_csr_rdata

	out

	AXIL_CTRL_DATA_WIDTH

	Read response data

	m_axil_csr_rresp

	out

	2

	Read response status

	m_axil_csr_rvalid

	out

	1

	Read response valid

	m_axil_csr_rready

	in

	1

	Read response ready

	
ctrl_reg

	Control register interface. This interface can be used to implement additional control registers and register blocks in the main NIC control register space.

	Signal

	Dir

	Width

	Description

	ctrl_reg_wr_addr

	out

	AXIL_CSR_ADDR_WIDTH

	Write address

	ctrl_reg_wr_data

	out

	AXIL_CTRL_DATA_WIDTH

	Write data

	ctrl_reg_wr_strb

	out

	AXIL_CTRL_STRB_WIDTH

	Write strobe

	ctrl_reg_wr_en

	out

	1

	Write enable

	ctrl_reg_wr_wait

	in

	1

	Write wait

	ctrl_reg_wr_ack

	in

	1

	Write acknowledge

	ctrl_reg_rd_addr

	out

	AXIL_CSR_ADDR_WIDTH

	Read address

	ctrl_reg_rd_en

	out

	1

	Read enable

	ctrl_reg_rd_data

	in

	AXIL_CTRL_DATA_WIDTH

	Read data

	ctrl_reg_rd_wait

	in

	1

	Read wait

	ctrl_reg_rd_ack

	in

	1

	Read acknowledge

	
m_axis_dma_read_desc

	DMA read descriptor output

	Signal

	Dir

	Width

	Description

	m_axis_dma_read_desc_dma_addr

	out

	DMA_ADDR_WIDTH

	DMA address

	m_axis_dma_read_desc_ram_sel

	out

	RAM_SEL_WIDTH

	RAM select

	m_axis_dma_read_desc_ram_addr

	out

	RAM_ADDR_WIDTH

	RAM address

	m_axis_dma_read_desc_len

	out

	DMA_LEN_WIDTH

	Transfer length

	m_axis_dma_read_desc_tag

	out

	DMA_TAG_WIDTH

	Transfer tag

	m_axis_dma_read_desc_valid

	out

	1

	Request valid

	m_axis_dma_read_desc_ready

	in

	1

	Request ready

	
s_axis_dma_read_desc_status

	DMA read descriptor status input

	Signal

	Dir

	Width

	Description

	s_axis_dma_read_desc_status_tag

	in

	DMA_TAG_WIDTH

	Status tag

	s_axis_dma_read_desc_status_error

	in

	4

	Status error code

	s_axis_dma_read_desc_status_valid

	in

	1

	Status valid

	
m_axis_dma_write_desc

	DMA write descriptor output

	Signal

	Dir

	Width

	Description

	m_axis_dma_write_desc_dma_addr

	out

	DMA_ADDR_WIDTH

	DMA address

	m_axis_dma_write_desc_ram_sel

	out

	RAM_SEL_WIDTH

	RAM select

	m_axis_dma_write_desc_ram_addr

	out

	RAM_ADDR_WIDTH

	RAM address

	m_axis_dma_write_desc_imm

	out

	DMA_IMM_WIDTH

	Immediate

	m_axis_dma_write_desc_imm_en

	out

	1

	Immediate enable

	m_axis_dma_write_desc_len

	out

	DMA_LEN_WIDTH

	Transfer length

	m_axis_dma_write_desc_tag

	out

	DMA_TAG_WIDTH

	Transfer tag

	m_axis_dma_write_desc_valid

	out

	1

	Request valid

	m_axis_dma_write_desc_ready

	in

	1

	Request ready

	
s_axis_dma_write_desc_status

	DMA write descriptor status input

	Signal

	Dir

	Width

	Description

	s_axis_dma_write_desc_status_tag

	in

	DMA_TAG_WIDTH

	Status tag

	s_axis_dma_write_desc_status_error

	in

	4

	Status error code

	s_axis_dma_write_desc_status_valid

	in

	1

	Status valid

	
dma_ram

	DMA RAM interface

	Signal

	Dir

	Width

	Description

	dma_ram_wr_cmd_sel

	in

	RAM_SEG_COUNT*RAM_SEL_WIDTH

	Write command select

	dma_ram_wr_cmd_be

	in

	RAM_SEG_COUNT*RAM_SEG_BE_WIDTH

	Write command byte enable

	dma_ram_wr_cmd_addr

	in

	RAM_SEG_COUNT*RAM_SEG_ADDR_WIDTH

	Write command address

	dma_ram_wr_cmd_data

	in

	RAM_SEG_COUNT*RAM_SEG_DATA_WIDTH

	Write command data

	dma_ram_wr_cmd_valid

	in

	RAM_SEG_COUNT

	Write command valid

	dma_ram_wr_cmd_ready

	out

	RAM_SEG_COUNT

	Write command ready

	dma_ram_wr_done

	out

	RAM_SEG_COUNT

	Write done

	dma_ram_rd_cmd_sel

	in

	RAM_SEG_COUNT*RAM_SEL_WIDTH

	Read command select

	dma_ram_rd_cmd_addr

	in

	RAM_SEG_COUNT*RAM_SEG_ADDR_WIDTH

	Read command address

	dma_ram_rd_cmd_valid

	in

	RAM_SEG_COUNT

	Read command valid

	dma_ram_rd_cmd_ready

	out

	RAM_SEG_COUNT

	Read command ready

	dma_ram_rd_resp_data

	out

	RAM_SEG_COUNT*RAM_SEG_DATA_WIDTH

	Read response data

	dma_ram_rd_resp_valid

	out

	RAM_SEG_COUNT

	Read response valid

	dma_ram_rd_resp_ready

	in

	RAM_SEG_COUNT

	Read response ready

	
msi_irq

	MSI request outputs

	Signal

	Dir

	Width

	Description

	msi_irq

	out

	MSI_COUNT

	Interrupt request

	
ptp

	PTP clock connections.

	Signal

	Dir

	Width

	Description

	ptp_clk

	in

	1

	PTP clock

	ptp_rst

	in

	1

	PTP reset

	ptp_sample_clk

	in

	1

	PTP sample clock

	ptp_pps

	out

	1

	PTP pulse-per-second (synchronous to ptp_clk)

	ptp_pps_str

	out

	1

	PTP pulse-per-second (stretched) (synchronous to ptp_clk)

	ptp_ts_96

	out

	PTP_TS_WIDTH

	current PTP time (synchronous to ptp_clk)

	ptp_ts_step

	out

	1

	PTP clock step (synchronous to ptp_clk)

	ptp_sync_pps

	out

	1

	PTP pulse-per-second (synchronous to clk)

	ptp_sync_ts_96

	out

	PTP_TS_WIDTH

	current PTP time (synchronous to clk)

	ptp_sync_ts_step

	out

	1

	PTP clock step (synchronous to clk)

	ptp_perout_locked

	out

	PTP_PEROUT_COUNT

	PTP period output locked

	ptp_perout_error

	out

	PTP_PEROUT_COUNT

	PTP period output error

	ptp_perout_pulse

	out

	PTP_PEROUT_COUNT

	PTP period output pulse

	
tx_clk

	Transmit clocks, one per port

	Signal

	Dir

	Width

	Description

	tx_clk

	in

	PORT_COUNT

	Transmit clock

	
tx_rst

	Transmit resets, one per port

	Signal

	Dir

	Width

	Description

	tx_rst

	in

	PORT_COUNT

	Transmit reset

	
tx_ptp_ts

	Reference PTP time for transmit timestamping synchronous to each transmit clock, one per port.

	Signal

	Dir

	Width

	Description

	tx_ptp_ts_96

	out

	PORT_COUNT*PTP_TS_WIDTH

	current PTP time

	tx_ptp_ts_step

	out

	PORT_COUNT

	PTP clock step

	
m_axis_tx

	Streaming transmit data towards network, one AXI stream interface per port.

	Signal

	Dir

	Width

	Description

	m_axis_tx_tdata

	out

	PORT_COUNT*AXIS_DATA_WIDTH

	Streaming data

	m_axis_tx_tkeep

	out

	PORT_COUNT*AXIS_KEEP_WIDTH

	Byte enable

	m_axis_tx_tvalid

	out

	PORT_COUNT

	Data valid

	m_axis_tx_tready

	in

	PORT_COUNT

	Ready for data

	m_axis_tx_tlast

	out

	PORT_COUNT

	End of frame

	m_axis_tx_tuser

	out

	PORT_COUNT*AXIS_TX_USER_WIDTH

	Sideband data

s_axis_tx_tuser bits, per port

	Bit

	Name

	Width

	Description

	0

	bad_frame

	1

	Invalid frame

	TX_TAG_WIDTH:1

	tx_tag

	TX_TAG_WIDTH

	Transmit tag

	
s_axis_tx_cpl

	Transmit completion, one AXI stream interface per port.

	Signal

	Dir

	Width

	Description

	s_axis_tx_cpl_ts

	in

	PORT_COUNT*PTP_TS_WIDTH

	PTP timestamp

	s_axis_tx_cpl_tag

	in

	PORT_COUNT*TX_TAG_WIDTH

	Transmit tag

	s_axis_tx_cpl_valid

	in

	PORT_COUNT

	Transmit completion valid

	s_axis_tx_cpl_ready

	out

	PORT_COUNT

	Transmit completion ready

	
tx_status

	Transmit link status inputs, one per port

	Signal

	Dir

	Width

	Description

	tx_status

	in

	PORT_COUNT

	Transmit link status

	
rx_clk

	Receive clocks, one per port

	Signal

	Dir

	Width

	Description

	rx_clk

	in

	PORT_COUNT

	Receive clock

	
rx_rst

	Receive resets, one per port

	Signal

	Dir

	Width

	Description

	rx_rst

	in

	PORT_COUNT

	Receive reset

	
rx_ptp_ts

	Reference PTP time for receive timestamping synchronous to each receive clock, one per port. Synchronous to rx_ptp_clk if PTP_SEPARATE_RX_CLOCK is set.

	Signal

	Dir

	Width

	Description

	rx_ptp_clk

	in

	PORT_COUNT

	clock for PTP time

	rx_ptp_rst

	in

	PORT_COUNT

	reset for PTP time

	rx_ptp_ts_96

	out

	PORT_COUNT*PTP_TS_WIDTH

	current PTP time

	rx_ptp_ts_step

	out

	PORT_COUNT

	PTP clock step

	
s_axis_rx

	Streaming receive data from network, one AXI stream interface per port.

	Signal

	Dir

	Width

	Description

	s_axis_rx_tdata

	in

	PORT_COUNT*AXIS_DATA_WIDTH

	Streaming data

	s_axis_rx_tkeep

	in

	PORT_COUNT*AXIS_KEEP_WIDTH

	Byte enable

	s_axis_rx_tvalid

	in

	PORT_COUNT

	Data valid

	s_axis_rx_tready

	out

	PORT_COUNT

	Ready for data

	s_axis_rx_tlast

	in

	PORT_COUNT

	End of frame

	s_axis_rx_tuser

	in

	PORT_COUNT*AXIS_TX_USER_WIDTH

	Sideband data

s_axis_rx_tuser bits, per port

	Bit

	Name

	Width

	Description

	0

	bad_frame

	1

	Invalid frame

	PTP_TS_WIDTH:1

	ptp_ts

	PTP_TS_WIDTH

	PTP timestamp

	
rx_status

	Receive link status inputs, one per port

	Signal

	Dir

	Width

	Description

	rx_status

	in

	PORT_COUNT

	Receive link status

	
s_axis_stat

	Statistics increment input

	Signal

	Dir

	Width

	Description

	s_axis_stat_tdata

	in

	STAT_INC_WIDTH

	Statistic increment

	s_axis_stat_tid

	in

	STAT_ID_WIDTH

	Statistic ID

	s_axis_stat_tvalid

	in

	1

	Statistic valid

	s_axis_stat_tready

	out

	1

	Statistic ready

	
app_gpio

	Application section GPIO

	Signal

	Dir

	Width

	Description

	app_gpio_in

	in

	APP_GPIO_IN_WIDTH

	GPIO inputs

	app_gpio_out

	out

	APP_GPIO_OUT_WIDTH

	GPIO outputs

	
app_jtag

	Application section JTAG scan chain

	Signal

	Dir

	Width

	Description

	app_jtag_tdi

	in

	1

	JTAG TDI

	app_jtag_tdo

	out

	1

	JTAG TDO

	app_jtag_tms

	in

	1

	JTAG TMS

	app_jtag_tck

	in

	1

	JTAG TCK

8.7. mqnic_core_axi

mqnic_core_axi is the core integration-level module for mqnic for the AXI host interface. Wrapper around mqnic_core, adding the AXI DMA interface module.

mqnic_core_axi integrates the following modules:

	dma_if_axi: AXI DMA engine

	mqnic_core: core logic

8.7.1. Parameters

Only parameters implemented in the wrapper are described here, for the other parameters see mqnic_core.

	
AXI_DATA_WIDTH

	AXI master interface data signal width, default 128.

	
AXI_ADDR_WIDTH

	AXI master interface address signal width, default 32.

	
AXI_STRB_WIDTH

	AXI master interface byte enable signal width, default (AXI_DATA_WIDTH/8).

	
AXI_ID_WIDTH

	AXI master interface ID signal width, default 8.

	
AXI_DMA_MAX_BURST_LEN

	AXI DMA maximum burst length, default 256.

	
AXI_DMA_READ_USE_ID

	Use ID field for AXI DMA reads, default 0.

	
AXI_DMA_WRITE_USE_ID

	Use ID field for AXI DMA writes, default 1.

	
AXI_DMA_READ_OP_TABLE_SIZE

	AXI read DMA operation table size, default 2**(AXI_ID_WIDTH).

	
AXI_DMA_WRITE_OP_TABLE_SIZE

	AXI write DMA operation table size, default 2**(AXI_ID_WIDTH).

	
IRQ_COUNT

	IRQ channel count, default 32.

	
STAT_DMA_ENABLE

	Enable DMA-related statistics, default 1.

	
STAT_AXI_ENABLE

	Enable AXI-related statistics, default 1.

8.7.2. Ports

Only ports implemented in the wrapper are described here, for the other ports see mqnic_core.

	
m_axi

	AXI master interface (DMA).

	Signal

	Dir

	Width

	Description

	m_axi_awid

	out

	AXI_ID_WIDTH

	Write ID

	m_axi_awaddr

	out

	AXI_ADDR_WIDTH

	Write address

	m_axi_awlen

	out

	8

	Write burst length

	m_axi_awsize

	out

	3

	Write burst size

	m_axi_awburst

	out

	2

	Write burst type

	m_axi_awlock

	out

	1

	Write lock

	m_axi_awcache

	out

	4

	Write cache

	m_axi_awprot

	out

	3

	Write protect

	m_axi_awvalid

	out

	1

	Write valid

	m_axi_awready

	in

	1

	Write ready

	m_axi_wdata

	out

	AXI_DATA_WIDTH

	Write data data

	m_axi_wstrb

	out

	AXI_STRB_WIDTH

	Write data strobe

	m_axi_wlast

	out

	1

	Write data last

	m_axi_wvalid

	out

	1

	Write data valid

	m_axi_wready

	in

	1

	Write data ready

	m_axi_bid

	in

	AXI_ID_WIDTH

	Write response ID

	m_axi_bresp

	in

	2

	Write response status

	m_axi_bvalid

	in

	1

	Write response valid

	m_axi_bready

	out

	1

	Write response ready

	m_axi_arid

	out

	AXI_ID_WIDTH

	Read ID

	m_axi_araddr

	out

	AXI_ADDR_WIDTH

	Read address

	m_axi_arlen

	out

	8

	Read burst length

	m_axi_arsize

	out

	3

	Read burst size

	m_axi_arburst

	out

	2

	Read burst type

	m_axi_arlock

	out

	1

	Read lock

	m_axi_arcache

	out

	4

	Read cache

	m_axi_arprot

	out

	3

	Read protect

	m_axi_arvalid

	out

	1

	Read address valid

	m_axi_arready

	in

	1

	Read address ready

	m_axi_rid

	in

	AXI_ID_WIDTH

	Read response ID

	m_axi_rdata

	in

	AXI_DATA_WIDTH

	Read response data

	m_axi_rresp

	in

	2

	Read response status

	m_axi_rlast

	in

	1

	Read response last

	m_axi_rvalid

	in

	1

	Read response valid

	m_axi_rready

	out

	1

	Read response ready

	
msi_irq

	Interrupt outputs

	Signal

	Dir

	Width

	Description

	irq

	out

	IRQ_COUNT

	Interrupt request

8.8. mqnic_core_pcie

mqnic_core_pcie is the core integration-level module for mqnic for the PCIe host interface. Wrapper around mqnic_core, adding PCIe DMA interface module and PCIe-AXI Lite masters for the NIC and application control BARs.

This module implements a generic PCIe host interface, which must be adapted to the target device with a wrapper. The available wrappers are:

	mqnic_core_pcie_us for Xilinx Virtex 7, UltraScale, and UltraScale+

	mqnic_core_pcie_s10 for Intel Stratix 10 H-tile/L-tile

mqnic_core_pcie integrates the following modules:

	dma_if_pcie: PCIe DMA engine

	pcie_axil_master: AXI lite master module for control registers

	stats_pcie_if: statistics collection for PCIe TLP traffic

	stats_dma_if_pcie: statistics collection for PCIe DMA engine

	mqnic_core: core logic

8.8.1. Parameters

Only parameters implemented in the wrapper are described here, for the other parameters see mqnic_core.

	
TLP_SEG_COUNT

	Number of segments in the TLP interfaces, default 1.

	
TLP_SEG_DATA_WIDTH

	TLP segment data width, default 256.

	
TLP_SEG_STRB_WIDTH

	TLP segment byte enable width, must be set to TLP_SEG_DATA_WIDTH/32.

	
TLP_SEG_HDR_WIDTH

	TLP segment header width, must be 128.

	
TX_SEQ_NUM_COUNT

	Number of transmit sequence number inputs, default 1.

	
TX_SEQ_NUM_WIDTH

	Transmit sequence number width, default 5.

	
TX_SEQ_NUM_ENABLE

	Use transmit sequence numbers, default 0.

	
PF_COUNT

	PCIe PF count, default 1.

	
VF_COUNT

	PCIe VF count, default 0.

	
F_COUNT

	PCIe function count, must be PF_COUNT+VF_COUNT.

	
PCIE_TAG_COUNT

	PCIe tag count, default 256.

	
PCIE_DMA_READ_OP_TABLE_SIZE

	PCIe read DMA operation table size, default PCIE_TAG_COUNT.

	
PCIE_DMA_READ_TX_LIMIT

	PCIe read DMA transmit operation limit, default 2**TX_SEQ_NUM_WIDTH.

	
PCIE_DMA_READ_TX_FC_ENABLE

	Use transmit flow control credits in PCIe read DMA, default 0.

	
PCIE_DMA_WRITE_OP_TABLE_SIZE

	PCIe write DMA operation table size, default 2**TX_SEQ_NUM_WIDTH.

	
PCIE_DMA_WRITE_TX_LIMIT

	PCIe write DMA transmit operation limit, default 2**TX_SEQ_NUM_WIDTH.

	
PCIE_DMA_WRITE_TX_FC_ENABLE

	Use transmit flow control credits in PCIe write DMA, default 0.

	
TLP_FORCE_64_BIT_ADDR

	Force 64 bit address field for all TLPs, default 0.

	
CHECK_BUS_NUMBER

	Check bus number in received TLPs, default 1.

	
MSI_COUNT

	Number of MSI channels, default 32.

	
STAT_DMA_ENABLE

	Enable DMA-related statistics, default 1.

	
STAT_PCIE_ENABLE

	Enable PCIe-related statistics, default 1.

8.8.2. Ports

Only ports implemented in the wrapper are described here, for the other ports see mqnic_core.

	
pcie_rx_req_tlp

	TLP input (request to BAR)

	Signal

	Dir

	Width

	Description

	pcie_rx_req_tlp_data

	in

	TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH

	TLP payload

	pcie_rx_req_tlp_hdr

	in

	TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH

	TLP header

	pcie_rx_req_tlp_bar_id

	in

	TLP_SEG_COUNT*3

	BAR ID

	pcie_rx_req_tlp_func_num

	in

	TLP_SEG_COUNT*8

	Function

	pcie_rx_req_tlp_valid

	in

	TLP_SEG_COUNT

	Valid

	pcie_rx_req_tlp_sop

	in

	TLP_SEG_COUNT

	Start of packet

	pcie_rx_req_tlp_eop

	in

	TLP_SEG_COUNT

	End of packet

	pcie_rx_req_tlp_ready

	out

	1

	Ready

	
pcie_rx_cpl_tlp

	TLP input (completion to DMA)

	Signal

	Dir

	Width

	Description

	pcie_rx_cpl_tlp_data

	in

	TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH

	TLP payload

	pcie_rx_cpl_tlp_hdr

	in

	TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH

	TLP header

	pcie_rx_cpl_tlp_error

	in

	TLP_SEG_COUNT*4

	Error

	pcie_rx_cpl_tlp_valid

	in

	TLP_SEG_COUNT

	Valid

	pcie_rx_cpl_tlp_sop

	in

	TLP_SEG_COUNT

	Start of packet

	pcie_rx_cpl_tlp_eop

	in

	TLP_SEG_COUNT

	End of packet

	pcie_rx_cpl_tlp_ready

	out

	1

	Ready

	
pcie_tx_rd_req_tlp

	TLP output (read request from DMA)

	Signal

	Dir

	Width

	Description

	pcie_tx_rd_req_tlp_hdr

	out

	TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH

	TLP header

	pcie_tx_rd_req_tlp_seq

	out

	TLP_SEG_COUNT*TX_SEQ_NUM_WIDTH

	TX seq num

	pcie_tx_rd_req_tlp_valid

	out

	TLP_SEG_COUNT

	Valid

	pcie_tx_rd_req_tlp_sop

	out

	TLP_SEG_COUNT

	Start of packet

	pcie_tx_rd_req_tlp_eop

	out

	TLP_SEG_COUNT

	End of packet

	pcie_tx_rd_req_tlp_ready

	in

	1

	Ready

	
s_axis_pcie_rd_req_tx_seq_num

	Transmit sequence number input (DMA read request)

	Signal

	Dir

	Width

	Description

	s_axis_pcie_rd_req_tx_seq_num

	in

	TX_SEQ_NUM_COUNT*TX_SEQ_NUM_WIDTH

	TX seq num

	s_axis_pcie_rd_req_tx_seq_num_valid

	in

	TX_SEQ_NUM_COUNT

	Valid

	
pcie_tx_wr_req_tlp

	TLP output (read request from DMA)

	Signal

	Dir

	Width

	Description

	pcie_tx_wr_req_tlp_data

	out

	TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH

	TLP payload

	pcie_tx_wr_req_tlp_strb

	out

	TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH

	TLP byte enable

	pcie_tx_wr_req_tlp_hdr

	out

	TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH

	TLP header

	pcie_tx_wr_req_tlp_seq

	out

	TLP_SEG_COUNT*TX_SEQ_NUM_WIDTH

	TX seq num

	pcie_tx_wr_req_tlp_valid

	out

	TLP_SEG_COUNT

	Valid

	pcie_tx_wr_req_tlp_sop

	out

	TLP_SEG_COUNT

	Start of packet

	pcie_tx_wr_req_tlp_eop

	out

	TLP_SEG_COUNT

	End of packet

	pcie_tx_wr_req_tlp_ready

	in

	1

	Ready

	
s_axis_pcie_wr_req_tx_seq_num

	Transmit sequence number input (DMA write request)

	Signal

	Dir

	Width

	Description

	s_axis_pcie_wr_req_tx_seq_num

	in

	TX_SEQ_NUM_COUNT*TX_SEQ_NUM_WIDTH

	TX seq num

	s_axis_pcie_wr_req_tx_seq_num_valid

	in

	TX_SEQ_NUM_COUNT

	Valid

	
pcie_tx_cpl_tlp

	TLP output (completion from BAR)

	Signal

	Dir

	Width

	Description

	pcie_tx_cpl_tlp_data

	out

	TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH

	TLP payload

	pcie_tx_cpl_tlp_strb

	out

	TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH

	TLP byte enable

	pcie_tx_cpl_tlp_hdr

	out

	TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH

	TLP header

	pcie_tx_cpl_tlp_valid

	out

	TLP_SEG_COUNT

	Valid

	pcie_tx_cpl_tlp_sop

	out

	TLP_SEG_COUNT

	Start of packet

	pcie_tx_cpl_tlp_eop

	out

	TLP_SEG_COUNT

	End of packet

	pcie_tx_cpl_tlp_ready

	in

	1

	Ready

	
pcie_tx_fc

	Flow control credits

	Signal

	Dir

	Width

	Description

	pcie_tx_fc_ph_av

	in

	8

	Available posted header credits

	pcie_tx_fc_pd_av

	in

	12

	Available posted data credits

	pcie_tx_fc_nph_av

	in

	8

	Available non-posted header credits

	
config

	Configuration inputs

	Signal

	Dir

	Width

	Description

	bus_num

	in

	8

	Bus number

	ext_tag_enable

	in

	F_COUNT

	Extended tag enable

	max_read_request_size

	in

	F_COUNT*3

	Max read request size

	max_payload_size

	in

	F_COUNT*3

	Max payload size

	
pcie_error

	PCIe error outputs

	Signal

	Dir

	Width

	Description

	pcie_error_cor

	out

	1

	Correctable error

	pcie_error_uncor

	out

	1

	Uncorrectable error

	
msi_irq

	MSI request outputs

	Signal

	Dir

	Width

	Description

	msi_irq

	out

	MSI_COUNT

	Interrupt request

8.9. mqnic_core_pcie_s10

mqnic_core_pcie_s10 is the core integration-level module for mqnic for the PCIe host interface on Intel Stratix 10 GX, SX, MX, and TX series devices with H-tiles or L-tiles. Wrapper around mqnic_core_pcie, adding device-specific shims for the PCIe interface.

mqnic_core_pcie_s10 integrates the following modules:

	pcie_s10_if: PCIe interface shim

	mqnic_core_pcie: core logic for PCI express

8.9.1. Parameters

Only parameters implemented in the wrapper are described here, for the other parameters see mqnic_core_pcie.

	
SEG_COUNT

	TLP segment count, default 1.

	
SEG_DATA_WIDTH

	TLP segment data signal width, default 256.

	
SEG_EMPTY_WIDTH

	TLP segment empty signal width, must be set to $clog2(SEG_DATA_WIDTH/32).

	
TX_SEQ_NUM_WIDTH

	Transmit sequence number width, default 6.

	
TX_SEQ_NUM_ENABLE

	Transmit sequence number enable, default 1.

	
L_TILE

	Tile select, 0 for H-tile, 1 for L-tile, default 0.

8.9.2. Ports

Only ports implemented in the wrapper are described here, for the other ports see mqnic_core_pcie.

	
rx_st

	H-Tile/L-Tile RX AVST interface

	Signal

	Dir

	Width

	Description

	rx_st_data

	in

	SEG_COUNT*SEG_DATA_WIDTH

	TLP data

	rx_st_empty

	in

	SEG_COUNT*SEG_EMPTY_WIDTH

	Empty

	rx_st_sop

	in

	SEG_COUNT

	Start of packet

	rx_st_eop

	in

	SEG_COUNT

	End of packet

	rx_st_valid

	in

	SEG_COUNT

	Valid

	rx_st_ready

	out

	1

	Ready

	rx_st_vf_active

	in

	SEG_COUNT

	VF active

	rx_st_func_num

	in

	SEG_COUNT*2

	Function number

	rx_st_vf_num

	in

	SEG_COUNT*11

	VF number

	rx_st_bar_range

	in

	SEG_COUNT*3

	BAR range

	
tx_st

	H-Tile/L-Tile TX AVST interface

	Signal

	Dir

	Width

	Description

	tx_st_data

	out

	SEG_COUNT*SEG_DATA_WIDTH

	TLP data

	tx_st_sop

	out

	SEG_COUNT

	Start of packet

	tx_st_eop

	out

	SEG_COUNT

	End of packet

	tx_st_valid

	out

	SEG_COUNT

	Valid

	tx_st_ready

	in

	1

	Ready

	tx_st_err

	out

	SEG_COUNT

	Error

	
tx_fc

	H-Tile/L-Tile TX flow control

	Signal

	Dir

	Width

	Description

	tx_ph_cdts

	in

	8

	Posted header credits

	tx_pd_cdts

	in

	12

	Posted data credits

	tx_nph_cdts

	in

	8

	Non-posted header credits

	tx_npd_cdts

	in

	12

	Non-posted data credits

	tx_cplh_cdts

	in

	8

	Completion header credits

	tx_cpld_cdts

	in

	12

	Completion data credits

	tx_hdr_cdts_consumed

	in

	SEG_COUNT

	Header credits consumed

	tx_data_cdts_consumed

	in

	SEG_COUNT

	Data credits consumed

	tx_cdts_type

	in

	SEG_COUNT*2

	Credit type

	tx_cdts_data_value

	in

	SEG_COUNT*1

	Credit data value

	
app_msi

	H-Tile/L-Tile MSI interrupt interface

	Signal

	Dir

	Width

	Description

	app_msi_req

	out

	1

	MSI request

	app_msi_ack

	in

	1

	MSI acknowledge

	app_msi_tc

	out

	3

	MSI traffic class

	app_msi_num

	out

	5

	MSI number

	app_msi_func_num

	out

	2

	Function number

	
tl_cfg

	H-Tile/L-Tile configuration interface

	Signal

	Dir

	Width

	Description

	tl_cfg_ctl

	in

	32

	Config data

	tl_cfg_add

	in

	5

	Config address

	tl_cfg_func

	in

	2

	Config function

8.10. mqnic_core_pcie_us

mqnic_core_pcie_us is the core integration-level module for mqnic for the PCIe host interface on Xilinx Virtex 7, UltraScale, and UltraScale+ series devices. Wrapper around mqnic_core_pcie, adding device-specific shims for the PCIe interface.

mqnic_core_pcie_us integrates the following modules:

	pcie_us_if: PCIe interface shim

	mqnic_core_pcie: core logic for PCI express

8.10.1. Parameters

Only parameters implemented in the wrapper are described here, for the other parameters see mqnic_core_pcie.

	
AXIS_PCIE_DATA_WIDTH

	PCIe AXI stream tdata signal width, default 256.

	
AXIS_PCIE_KEEP_WIDTH

	PCIe AXI stream tkeep signal width, must be set to (AXIS_PCIE_DATA_WIDTH/32).

	
AXIS_PCIE_RC_USER_WIDTH

	PCIe AXI stream RC tuser signal width, default AXIS_PCIE_DATA_WIDTH < 512 ? 75 : 161.

	
AXIS_PCIE_RQ_USER_WIDTH

	PCIe AXI stream RQ tuser signal width, default AXIS_PCIE_DATA_WIDTH < 512 ? 62 : 137.

	
AXIS_PCIE_CQ_USER_WIDTH

	PCIe AXI stream CQ tuser signal width, default AXIS_PCIE_DATA_WIDTH < 512 ? 85 : 183.

	
AXIS_PCIE_CC_USER_WIDTH

	PCIe AXI stream CC tuser signal width, default AXIS_PCIE_DATA_WIDTH < 512 ? 33 : 81.

	
RQ_SEQ_NUM_WIDTH

	PCIe RQ sequence number width, default AXIS_PCIE_RQ_USER_WIDTH == 60 ? 4 : 6.

8.10.2. Ports

Only ports implemented in the wrapper are described here, for the other ports see mqnic_core_pcie.

	
s_axis_rc

	AXI input (RC)

	Signal

	Dir

	Width

	Description

	s_axis_rc_tdata

	in

	AXIS_PCIE_DATA_WIDTH

	TLP data

	s_axis_rc_tkeep

	in

	AXIS_PCIE_KEEP_WIDTH

	Byte enable

	s_axis_rc_tvalid

	in

	1

	Valid

	s_axis_rc_tready

	out

	1

	Ready

	s_axis_rc_tlast

	in

	1

	End of frame

	s_axis_rc_tuser

	in

	AXIS_PCIE_RC_USER_WIDTH

	Sideband data

	
m_axis_rq

	AXI output (RQ)

	Signal

	Dir

	Width

	Description

	m_axis_rq_tdata

	out

	AXIS_PCIE_DATA_WIDTH

	TLP data

	m_axis_rq_tkeep

	out

	AXIS_PCIE_KEEP_WIDTH

	Byte enable

	m_axis_rq_tvalid

	out

	1

	Valid

	m_axis_rq_tready

	in

	1

	Ready

	m_axis_rq_tlast

	out

	1

	End of frame

	m_axis_rq_tuser

	out

	AXIS_PCIE_RQ_USER_WIDTH

	Sideband data

	
s_axis_cq

	AXI input (CQ)

	Signal

	Dir

	Width

	Description

	s_axis_cq_tdata

	in

	AXIS_PCIE_DATA_WIDTH

	TLP data

	s_axis_cq_tkeep

	in

	AXIS_PCIE_KEEP_WIDTH

	Byte enable

	s_axis_cq_tvalid

	in

	1

	Valid

	s_axis_cq_tready

	out

	1

	Ready

	s_axis_cq_tlast

	in

	1

	End of frame

	s_axis_cq_tuser

	in

	AXIS_PCIE_CQ_USER_WIDTH

	Sideband data

	
m_axis_cc

	AXI output (CC)

	Signal

	Dir

	Width

	Description

	m_axis_cc_tdata

	out

	AXIS_PCIE_DATA_WIDTH

	TLP data

	m_axis_cc_tkeep

	out

	AXIS_PCIE_KEEP_WIDTH

	Byte enable

	m_axis_cc_tvalid

	out

	1

	Valid

	m_axis_cc_tready

	in

	1

	Ready

	m_axis_cc_tlast

	out

	1

	End of frame

	m_axis_cc_tuser

	out

	AXIS_PCIE_CC_USER_WIDTH

	Sideband data

	
s_axis_rq_seq_num

	Transmit sequence number input

	Signal

	Dir

	Width

	Description

	s_axis_rq_seq_num_0

	in

	RQ_SEQ_NUM_WIDTH

	Sequence number

	s_axis_rq_seq_num_valid_0

	in

	1

	Valid

	s_axis_rq_seq_num_1

	in

	RQ_SEQ_NUM_WIDTH

	Sequence number

	s_axis_rq_seq_num_valid_1

	in

	1

	Valid

	
cfg_fc_ph

	Flow control

	Signal

	Dir

	Width

	Description

	cfg_fc_ph

	in

	8

	Posted header credits

	cfg_fc_pd

	in

	12

	Posted data credits

	cfg_fc_nph

	in

	8

	Non-posted header credits

	cfg_fc_npd

	in

	12

	Non-posted data credits

	cfg_fc_cplh

	in

	8

	Completion header credits

	cfg_fc_cpld

	in

	12

	Completion data credits

	cfg_fc_sel

	out

	3

	Credit select

	
cfg_max_read_req

	Configuration inputs

	Signal

	Dir

	Width

	Description

	cfg_max_read_req

	in

	F_COUNT*3

	Max read request

	cfg_max_payload

	in

	F_COUNT*3

	Max payload

	
cfg_mgmt_addr

	Configuration interface

	Signal

	Dir

	Width

	Description

	cfg_mgmt_addr

	out

	10

	Address

	cfg_mgmt_function_number

	out

	8

	Function number

	cfg_mgmt_write

	out

	1

	Write enable

	cfg_mgmt_write_data

	out

	32

	Write data

	cfg_mgmt_byte_enable

	out

	4

	Byte enable

	cfg_mgmt_read

	out

	1

	Read enable

	cfg_mgmt_read_data

	in

	32

	Read data

	cfg_mgmt_read_write_done

	in

	1

	Write done

	
cfg_interrupt_msi_enable

	Interrupt interface

	Signal

	Dir

	Width

	Description

	cfg_interrupt_msi_enable

	in

	4

	MSI enable

	cfg_interrupt_msi_vf_enable

	in

	8

	VF enable

	cfg_interrupt_msi_mmenable

	in

	12

	MM enable

	cfg_interrupt_msi_mask_update

	in

	1

	Mask update

	cfg_interrupt_msi_data

	in

	32

	Data

	cfg_interrupt_msi_select

	out

	4

	Select

	cfg_interrupt_msi_int

	out

	32

	Interrupt request

	cfg_interrupt_msi_pending_status

	out

	32

	Pending status

	cfg_interrupt_msi_pending_status_data_enable

	out

	1

	Pending status enable

	cfg_interrupt_msi_pending_status_function_num

	out

	4

	Pending status function

	cfg_interrupt_msi_sent

	in

	1

	MSI sent

	cfg_interrupt_msi_fail

	in

	1

	MSI fail

	cfg_interrupt_msi_attr

	out

	3

	MSI attr

	cfg_interrupt_msi_tph_present

	out

	1

	TPH present

	cfg_interrupt_msi_tph_type

	out

	2

	TPH type

	cfg_interrupt_msi_tph_st_tag

	out

	9

	TPH ST tag

	cfg_interrupt_msi_function_number

	out

	4

	MSI function number

	
status_error_cor

	PCIe error outputs

	Signal

	Dir

	Width

	Description

	status_error_cor

	out

	1

	Correctable error

	status_error_uncor

	out

	1

	Uncorrectable error

8.11. mqnic_egress

mqnic_egress implements egress processing on the transmit side. This consists of:

	Transmit checksum offloading

mqnic_egress integrates the following modules:

	tx_checksum: transmit checksum offloading

8.12. mqnic_ingress

mqnic_ingress implements ingress processing on the receive path. This consists of:

	Receive checksum offloading

	RSS flow hashing

mqnic_ingress integrates the following modules:

	rx_checksum: receive checksum offloading

	rx_hash: RSS flow hash computation

8.13. mqnic_interface

mqnic_interface implements one NIC interface, including the queue management logic, descriptor, completion, and event handling, transmit scheduler, and the transmit and receive datapaths.

mqnic_interface integrates the following modules:

	queue_manager: transmit and receive queues

	cpl_queue_manager: transmit and receive completion queues, event queues

	desc_fetch: descriptor fetch

	cpl_write: completion write

	mqnic_tx_scheduler_block: transmit scheduler

	mqnic_interface_rx: receive datapath

	mqnic_interface_tx: transmit datapath

8.14. mqnic_interface_rx

mqnic_interface_rx implements the host-side receive datapath.

mqnic_interface_rx integrates the following modules:

	rx_engine: receive engine

	mqnic_ingress: ingress datapath

	dma_client_axis_sink: internal DMA engine

8.15. mqnic_interface_tx

mqnic_interface_tx implements the host-side transmit datapath.

mqnic_interface_tx integrates the following modules:

	tx_engine: transmit engine

	dma_client_axis_source: internal DMA engine

	mqnic_egress: egress datapath

8.16. mqnic_l2_egress

mqnic_l2_egress contains layer 2 egress processing components, and operates synchronous to the MAC TX clock. Currently, this module is a placeholder, passing through streaming data without modification.

8.16.1. Parameters

	
AXIS_DATA_WIDTH

	Streaming interface tdata signal width, default 512.

	
AXIS_KEEP_WIDTH

	Streaming interface tkeep signal width, must be set to AXIS_DATA_WIDTH/8.

	
AXIS_USER_WIDTH

	Streaming interface tuser signal width, default 1.

8.16.2. Ports

	
clk

	Logic clock.

	Signal

	Dir

	Width

	Description

	clk

	in

	1

	Logic clock

	
rst

	Logic reset, active high

	Signal

	Dir

	Width

	Description

	rst

	in

	1

	Logic reset, active high

	
s_axis

	Streaming transmit data from host

	Signal

	Dir

	Width

	Description

	s_axis_tdata

	in

	AXIS_DATA_WIDTH

	Streaming data

	s_axis_tkeep

	in

	AXIS_KEEP_WIDTH

	Byte enable

	s_axis_tvalid

	in

	
	Data valid

	s_axis_tready

	out

	
	Ready for data

	s_axis_tlast

	in

	
	End of frame

	s_axis_tuser

	in

	AXIS_USER_WIDTH

	Sideband data

s_axis_tuser bits

	Bit

	Name

	Width

	Description

	0

	bad_frame

	1

	Invalid frame

	PTP_TS_WIDTH:1

	ptp_ts

	PTP_TS_WIDTH

	PTP timestamp

	
m_axis

	Streaming transmit data towards network

	Signal

	Dir

	Width

	Description

	m_axis_tdata

	out

	AXIS_DATA_WIDTH

	Streaming data

	m_axis_tkeep

	out

	AXIS_KEEP_WIDTH

	Byte enable

	m_axis_tvalid

	out

	
	Data valid

	m_axis_tready

	in

	
	Ready for data

	m_axis_tlast

	out

	
	End of frame

	m_axis_tuser

	out

	AXIS_USER_WIDTH

	Sideband data

m_axis_tuser bits

	Bit

	Name

	Width

	Description

	0

	bad_frame

	1

	Invalid frame

	PTP_TS_WIDTH:1

	ptp_ts

	PTP_TS_WIDTH

	PTP timestamp

8.17. mqnic_l2_ingress

mqnic_l2_ingress contains layer 2 ingress processing components, and operates synchronous to the MAC RX clock. Currently, this module is a placeholder, passing through streaming data without modification.

8.17.1. Parameters

	
AXIS_DATA_WIDTH

	Streaming interface tdata signal width, default 512.

	
AXIS_KEEP_WIDTH

	Streaming interface tkeep signal width, must be set to AXIS_DATA_WIDTH/8.

	
AXIS_USER_WIDTH

	Streaming interface tuser signal width, default 1.

	
AXIS_USE_READY

	Use tready signal, default 0. If set, logic will exert backpressure with tready instead of dropping packets when RX FIFOs are full.

8.17.2. Ports

	
clk

	Logic clock.

	Signal

	Dir

	Width

	Description

	clk

	in

	1

	Logic clock

	
rst

	Logic reset, active high

	Signal

	Dir

	Width

	Description

	rst

	in

	1

	Logic reset, active high

	
s_axis

	Streaming receive data from network

	Signal

	Dir

	Width

	Description

	s_axis_tdata

	in

	AXIS_DATA_WIDTH

	Streaming data

	s_axis_tkeep

	in

	AXIS_KEEP_WIDTH

	Byte enable

	s_axis_tvalid

	in

	
	Data valid

	s_axis_tready

	out

	
	Ready for data

	s_axis_tlast

	in

	
	End of frame

	s_axis_tuser

	in

	AXIS_USER_WIDTH

	Sideband data

s_axis_tuser bits

	Bit

	Name

	Width

	Description

	0

	bad_frame

	1

	Invalid frame

	PTP_TS_WIDTH:1

	ptp_ts

	PTP_TS_WIDTH

	PTP timestamp

	
m_axis

	Streaming receive data towards host

	Signal

	Dir

	Width

	Description

	m_axis_tdata

	out

	AXIS_DATA_WIDTH

	Streaming data

	m_axis_tkeep

	out

	AXIS_KEEP_WIDTH

	Byte enable

	m_axis_tvalid

	out

	
	Data valid

	m_axis_tready

	in

	
	Ready for data

	m_axis_tlast

	out

	
	End of frame

	m_axis_tuser

	out

	AXIS_USER_WIDTH

	Sideband data

m_axis_tuser bits

	Bit

	Name

	Width

	Description

	0

	bad_frame

	1

	Invalid frame

	PTP_TS_WIDTH:1

	ptp_ts

	PTP_TS_WIDTH

	PTP timestamp

8.18. mqnic_ptp

mqnic_ptp implements the PTP subsystem, including PTP clock and period output modules.

mqnic_ptp integrates the following modules:

	mqnic_ptp_clock: PTP clock (PTP hardware clock register block)

	mqnic_ptp_perout: PTP period output (PTP period output register block)

8.18.1. Parameters

	
PTP_PERIOD_NS_WIDTH

	PTP period ns field width, default 4.

	
PTP_OFFSET_NS_WIDTH

	PTP offset ns field width, default 32.

	
PTP_FNS_WIDTH

	PTP fractional ns field width, default 32.

	
PTP_PERIOD_NS

	PTP nominal period, ns portion 4'd4.

	
PTP_PERIOD_FNS

	PTP nominal period, fractional ns portion 32'd0.

	
PTP_PEROUT_ENABLE

	Enable PTP period output module, default 0.

	
PTP_PEROUT_COUNT

	Number of PTP period output channels, default 1.

	
REG_ADDR_WIDTH

	Register interface address width, default 7+(PTP_PEROUT_ENABLE ? $clog2((PTP_PEROUT_COUNT+1)/2) + 1 : 0).

	
REG_DATA_WIDTH

	Register interface data width, default 32.

	
REG_STRB_WIDTH

	Register interface byte enable width, must be set to (REG_DATA_WIDTH/8).

	
RB_BASE_ADDR

	Base address of control register block, default 0.

	
RB_NEXT_PTR

	Address of next control register block, default 0.

8.18.2. Ports

	
clk

	Logic clock.

	Signal

	Dir

	Width

	Description

	clk

	in

	1

	Logic clock

	
rst

	Logic reset, active high

	Signal

	Dir

	Width

	Description

	rst

	in

	1

	Logic reset, active high

	
reg

	Control register interface

	Signal

	Dir

	Width

	Description

	reg_wr_addr

	in

	REG_ADDR_WIDTH

	Write address

	reg_wr_data

	in

	REG_DATA_WIDTH

	Write data

	reg_wr_strb

	in

	REG_STRB_WIDTH

	Write byte enable

	reg_wr_en

	in

	1

	Write enable

	reg_wr_wait

	out

	1

	Write wait

	reg_wr_ack

	out

	1

	Write acknowledge

	reg_rd_addr

	in

	REG_ADDR_WIDTH

	Read address

	reg_rd_en

	in

	1

	Read enable

	reg_rd_data

	out

	REG_DATA_WIDTH

	Read data

	reg_rd_wait

	out

	1

	Read wait

	reg_rd_ack

	out

	1

	Read acknowledge

	
ptp

	PTP signals

	Signal

	Dir

	Width

	Description

	ptp_pps

	out

	1

	Pulse-per-second

	ptp_ts_96

	out

	96

	PTP timestamp

	ptp_ts_step

	out

	1

	PTP timestamp step

	ptp_perout_locked

	out

	PTP_PEROUT_COUNT

	Period output channel locked

	ptp_perout_error

	out

	PTP_PEROUT_COUNT

	Period output channel error

	ptp_perout_pulse

	out

	PTP_PEROUT_COUNT

	Period output channel pulse

8.19. mqnic_ptp_clock

mqnic_ptp_clock implements the PTP hardware clock. It wraps ptp_clock and provides a register interface for control, see PTP hardware clock register block.

8.19.1. Parameters

	
PTP_PERIOD_NS_WIDTH

	PTP period ns field width, default 4.

	
PTP_OFFSET_NS_WIDTH

	PTP offset ns field width, default 32.

	
PTP_FNS_WIDTH

	PTP fractional ns field width, default 32.

	
PTP_PERIOD_NS

	PTP nominal period, ns portion 4'd4.

	
PTP_PERIOD_FNS

	PTP nominal period, fractional ns portion 32'd0.

	
PTP_PEROUT_ENABLE

	Enable PTP period output module, default 0.

	
PTP_PEROUT_COUNT

	Number of PTP period output channels, default 1.

	
REG_ADDR_WIDTH

	Register interface address width, default 7.

	
REG_DATA_WIDTH

	Register interface data width, default 32.

	
REG_STRB_WIDTH

	Register interface byte enable width, must be set to (REG_DATA_WIDTH/8).

	
RB_BASE_ADDR

	Base address of control register block, default 0.

	
RB_NEXT_PTR

	Address of next control register block, default 0.

8.19.2. Ports

	
clk

	Logic clock.

	Signal

	Dir

	Width

	Description

	clk

	in

	1

	Logic clock

	
rst

	Logic reset, active high

	Signal

	Dir

	Width

	Description

	rst

	in

	1

	Logic reset, active high

	
reg

	Control register interface

	Signal

	Dir

	Width

	Description

	reg_wr_addr

	in

	REG_ADDR_WIDTH

	Write address

	reg_wr_data

	in

	REG_DATA_WIDTH

	Write data

	reg_wr_strb

	in

	REG_STRB_WIDTH

	Write byte enable

	reg_wr_en

	in

	1

	Write enable

	reg_wr_wait

	out

	1

	Write wait

	reg_wr_ack

	out

	1

	Write acknowledge

	reg_rd_addr

	in

	REG_ADDR_WIDTH

	Read address

	reg_rd_en

	in

	1

	Read enable

	reg_rd_data

	out

	REG_DATA_WIDTH

	Read data

	reg_rd_wait

	out

	1

	Read wait

	reg_rd_ack

	out

	1

	Read acknowledge

	
ptp

	PTP signals

	Signal

	Dir

	Width

	Description

	ptp_pps

	out

	1

	Pulse-per-second

	ptp_ts_96

	out

	96

	PTP timestamp

	ptp_ts_step

	out

	1

	PTP timestamp step

8.20. mqnic_ptp_perout

mqnic_ptp_perout implements the PTP period output functionality. It wraps ptp_perout and provides a register interface for control, see PTP period output register block.

8.20.1. Parameters

	
REG_ADDR_WIDTH

	Register interface address width, default 6.

	
REG_DATA_WIDTH

	Register interface data width, default 32.

	
REG_STRB_WIDTH

	Register interface byte enable width, must be set to (REG_DATA_WIDTH/8).

	
RB_BASE_ADDR

	Base address of control register block, default 0.

	
RB_NEXT_PTR

	Address of next control register block, default 0.

8.20.2. Ports

	
clk

	Logic clock.

	Signal

	Dir

	Width

	Description

	clk

	in

	1

	Logic clock

	
rst

	Logic reset, active high

	Signal

	Dir

	Width

	Description

	rst

	in

	1

	Logic reset, active high

	
reg

	Control register interface

	Signal

	Dir

	Width

	Description

	reg_wr_addr

	in

	REG_ADDR_WIDTH

	Write address

	reg_wr_data

	in

	REG_DATA_WIDTH

	Write data

	reg_wr_strb

	in

	REG_STRB_WIDTH

	Write byte enable

	reg_wr_en

	in

	1

	Write enable

	reg_wr_wait

	out

	1

	Write wait

	reg_wr_ack

	out

	1

	Write acknowledge

	reg_rd_addr

	in

	REG_ADDR_WIDTH

	Read address

	reg_rd_en

	in

	1

	Read enable

	reg_rd_data

	out

	REG_DATA_WIDTH

	Read data

	reg_rd_wait

	out

	1

	Read wait

	reg_rd_ack

	out

	1

	Read acknowledge

	
ptp

	PTP signals

	Signal

	Dir

	Width

	Description

	ptp_ts_96

	in

	96

	PTP timestamp

	ptp_ts_step

	in

	1

	PTP timestamp step

	ptp_perout_locked

	out

	1

	Period output locked

	ptp_perout_error

	out

	1

	Period output error

	ptp_perout_pulse

	out

	1

	Period output pulse

8.21. mqnic_tx_scheduler_block

mqnic_tx_scheduler_block is the top-level block for the transmit scheduler. It is instantiated in mqnic_interface. This is a pluggable module, intended to be replaced by a customized implementation via the build system. See …. for more details.

Two variations are provided:

	mqnic_tx_scheduler_block_rr: round-robin transmit scheduler (tx_scheduler_rr)

	mqnic_tx_scheduler_block_rr_tdma: round-robin transmit scheduler (tx_scheduler_rr) with TDMA scheduler controller

8.21.1. Parameters

	
PORTS

	Number of ports, default 1.

	
INDEX

	Scheduler index, default 0.

	
REG_ADDR_WIDTH

	Width of control register interface address in bits, default 16.

	
REG_DATA_WIDTH

	Width of control register interface data in bits, default 32.

	
REG_STRB_WIDTH

	Width of control register interface strb, must be set to (REG_DATA_WIDTH/8).

	
RB_BASE_ADDR

	Register block base address, default 0.

	
RB_NEXT_PTR

	Register block next pointer, default 0.

	
AXIL_DATA_WIDTH

	Width of AXI lite data bus in bits, default 32.

	
AXIL_ADDR_WIDTH

	Width of AXI lite address bus in bits, default 16.

	
AXIL_STRB_WIDTH

	Width of AXI lite wstrb (width of data bus in words), must be set to AXIL_DATA_WIDTH/8.

	
AXIL_OFFSET

	Offset to AXI lite interface, default 0.

	
LEN_WIDTH

	Length field width, default 16.

	
REQ_TAG_WIDTH

	Transmit request tag field width, default 8.

	
OP_TABLE_SIZE

	Number of outstanding operations, default 16.

	
QUEUE_INDEX_WIDTH

	Queue index width, default 6.

	
PIPELINE

	Pipeline setting, default 3.

	
TDMA_INDEX_WIDTH

	Scheduler TDMA index width, default 8.

	
PTP_TS_WIDTH

	PTP timestamp width, default 96.

	
AXIS_TX_DEST_WIDTH

	AXI stream tdest signal width, default $clog2(PORTS)+4.

	
MAX_TX_SIZE

	Max transmit packet size, default 2048.

8.21.2. Ports

	
clk

	Logic clock. Most interfaces are synchronous to this clock.

	Signal

	Dir

	Width

	Description

	clk

	in

	1

	Logic clock

	
rst

	Logic reset, active high

	Signal

	Dir

	Width

	Description

	rst

	in

	1

	Logic reset, active high

	
ctrl_reg

	Control register interface

	Signal

	Dir

	Width

	Description

	ctrl_reg_wr_addr

	in

	REG_ADDR_WIDTH

	Write address

	ctrl_reg_wr_data

	in

	REG_DATA_WIDTH

	Write data

	ctrl_reg_wr_strb

	in

	REG_STRB_WIDTH

	Write byte enable

	ctrl_reg_wr_en

	in

	1

	Write enable

	ctrl_reg_wr_wait

	out

	1

	Write wait

	ctrl_reg_wr_ack

	out

	1

	Write acknowledge

	ctrl_reg_rd_addr

	in

	REG_ADDR_WIDTH

	Read address

	ctrl_reg_rd_en

	in

	1

	Read enable

	ctrl_reg_rd_data

	out

	REG_DATA_WIDTH

	Read data

	ctrl_reg_rd_wait

	out

	1

	Read wait

	ctrl_reg_rd_ack

	out

	1

	Read acknowledge

	
s_axil

	AXI-Lite slave interface. This interface provides access to memory-mapped per-queue control registers.

	Signal

	Dir

	Width

	Description

	s_axil_awaddr

	in

	AXIL_ADDR_WIDTH

	Write address

	s_axil_awprot

	in

	3

	Write protect

	s_axil_awvalid

	in

	1

	Write address valid

	s_axil_awready

	out

	1

	Write address ready

	s_axil_wdata

	in

	AXIL_DATA_WIDTH

	Write data

	s_axil_wstrb

	in

	AXIL_STRB_WIDTH

	Write data strobe

	s_axil_wvalid

	in

	1

	Write data valid

	s_axil_wready

	out

	1

	Write data ready

	s_axil_bresp

	out

	2

	Write response status

	s_axil_bvalid

	out

	1

	Write response valid

	s_axil_bready

	in

	1

	Write response ready

	s_axil_araddr

	in

	AXIL_ADDR_WIDTH

	Read address

	s_axil_arprot

	in

	3

	Read protect

	s_axil_arvalid

	in

	1

	Read address valid

	s_axil_arready

	out

	1

	Read address ready

	s_axil_rdata

	out

	AXIL_DATA_WIDTH

	Read response data

	s_axil_rresp

	out

	2

	Read response status

	s_axil_rvalid

	out

	1

	Read response valid

	s_axil_rready

	in

	1

	Read response ready

	
m_axis_tx_req

	Transmit request output, for transmit requests to the transmit engine.

	Signal

	Dir

	Width

	Description

	m_axis_tx_req_queue

	out

	QUEUE_INDEX_WIDTH

	Queue index

	m_axis_tx_req_tag

	out

	REQ_TAG_WIDTH

	Tag

	m_axis_tx_req_dest

	out

	AXIS_TX_DEST_WIDTH

	Destination port and TC

	m_axis_tx_req_valid

	out

	1

	Valid

	m_axis_tx_req_ready

	in

	1

	Ready

	
s_axis_tx_req_status

	Transmit request status input, for responses from the transmit engine.

	Signal

	Dir

	Width

	Description

	s_axis_tx_req_status_len

	in

	LEN_WIDTH

	Packet length

	s_axis_tx_req_status_tag

	in

	REQ_TAG_WIDTH

	Tag

	s_axis_tx_req_status_valid

	in

	1

	Valid

	
s_axis_doorbell

	Doorbell input, for enqueue notifications from the transmit queue manager.

	Signal

	Dir

	Width

	Description

	s_axis_doorbell_queue

	in

	QUEUE_INDEX_WIDTH

	Queue index

	s_axis_doorbell_valid

	in

	1

	Valid

	
ptp_ts

	PTP time input from PTP clock

	Signal

	Dir

	Width

	Description

	ptp_ts_96

	in

	PTP_TS_WIDTH

	PTP time

	ptp_ts_step

	in

	1

	PTP clock step

	
config

	Configuration signals

	Signal

	Dir

	Width

	Description

	mtu

	in

	LEN_WIDTH

	MTU

8.22. queue_manager

queue_manager implements the queue management logic for the transmit and receive queues. It stores host to device queue state in block RAM or ultra RAM.

8.22.1. Operation

Communication of packet data between the Corundum NIC and the driver is mediated via descriptor and completion queues. Descriptor queues form the host-to-NIC communications channel, carrying information about where individual packets are stored in system memory. Completion queues form the NIC-to-host communications channel, carrying information about completed operations and associated metadata. The descriptor and completion queues are implemented as ring buffers that reside in DMA-accessible system memory, while the NIC hardware maintains the necessary queue state information. This state information consists of a pointer to the DMA address of the ring buffer, the size of the ring buffer, the producer and consumer pointers, and a reference to the associated completion queue. The required state for each queue fits into 128 bits.

The queue management logic for the Corundum NIC must be able to efficiently store and manage the state for thousands of queues. This means that the queue state must be completely stored in block RAM (BRAM) or ultra RAM (URAM) on the FPGA. Since a 128 bit RAM is required and URAM blocks are 72x4096, storing the state for 4096 queues requires only 2 URAM instances. Utilizing URAM instances enables scaling the queue management logic to handle at least 32,768 queues per interface.

In order to support high throughput, the NIC must be able to process multiple descriptors in parallel. Therefore, the queue management logic must track multiple in-progress operations, reporting updated queue pointers to the driver as the operations are completed. The state required to track in-process operations is much smaller than the state required to describe the queue state itself. Therefore the in-process operation state is stored in flip-flops and distributed RAM.

The NIC design uses two queue manager modules: queue_manager is used to manage host-to-NIC descriptor queues, while cpl_queue_manager is used to manage NIC-to-host completion queues. The modules are similar except for a few minor differences in terms of pointer handling, fill handling, and doorbell/event generation. Because of the similarities, this section will discuss only the operation of the queue_manager module.

The BRAM or URAM array used to store the queue state information requires several cycles of latency for each read operation, so the queue_manager is built with a pipelined architecture to facilitate multiple concurrent operations. The pipeline supports four different operations: register read, register write, dequeue/enqueue request, and dequeue/enqueue commit. Register-access operations over an AXI lite interface enable the driver to initialize the queue state and provide pointers to the allocated host memory as well as access the producer and consumer pointers during normal operation.

[image: ../_images/corundum_queue_manager_block.svg]
Fig. 8.2 Block diagram of the queue manager module, showing the queue state RAM and operation table. Ind = index, Addr = DMA address, Op = index in operation table, Act = active, LS = log base 2 of queue size, Cpl = completion queue index, Tail = tail or consumer pointer, Head = head or producer pointer, Com = committed; QI = queue index; Ptr = new queue pointer

A block diagram of the queue manager module is shown in Fig. 8.2. The BRAM or URAM array used to store the queue state information requires several cycles of latency for each read operation, so the queue_manager is built with a pipelined architecture to facilitate multiple concurrent operations. The pipeline supports four different operations: register read, register write, dequeue/enqueue request, and dequeue/enqueue commit. Register-access operations over an AXI lite interface enable the driver to initialize the queue state and provide pointers to the allocated host memory as well as access the producer and consumer pointers during normal operation.

[image: ../_images/queue_pointers.svg]
Fig. 8.3 Queue pointers on software ring buffers.

Each queue has three pointers associated with it, as shown in Fig. 8.3—the producer pointer, the host-facing consumer pointer, and the shadow consumer pointer. The driver has control over the producer pointer and can read the host-facing consumer pointer. Entries between the consumer pointer and the producer pointer are under the control of the NIC and must not be modified by the driver. The driver enqueues a descriptor by writing it into the ring buffer at the index indicated by the producer pointer, issuing a memory barrier, then incrementing the producer pointer in the queue manager. The NIC dequeues descriptors by reading them out of the descriptor ring via DMA and incrementing the consumer pointer. The host-facing consumer pointer must not be incremented until the descriptor read operation completes, so the queue manager maintains an internal shadow consumer pointer to keep track of read operations that have started in addition to the host-facing pointer that is updated as the read operations are completed.

The dequeue request operation on the queue manager pipeline initiates a dequeue operation on a queue. If the target queue is disabled or empty, the operation is rejected with an empty or error status. Otherwise, the shadow consumer pointer is incremented and the physical address of the queue element is returned, along with the queue element index and an operation tag. Operations on any combination of queues can be initiated until the operation table is full. The dequeue request input is stalled when the table is full. As the read operations complete, the dequeue operations are committed to free the operation table entry and update the host-facing consumer pointer. Operations can be committed in any order, simply setting the commit flag in the operation table, but the operation table entries will be freed and host-facing consumer pointer will be updated in-order to ensure descriptors being processed are not modified by the driver.

The operation table tracks in-process queue operations that have yet to be committed. Entries in the table consist of an active flag, a commit flag, the queue index, and the index of the next element in the queue. The queue state also contains a pointer to the most recent entry for that queue in the operation table. During an enqueue operation, the operation table is checked to see if there are any outstanding operations on that queue. If so, the consumer pointer for the most recent operation is incremented and stored in the new operation table entry. Otherwise, the current consumer pointer is incremented. When a dequeue commit request is received, the commit bit is set for the corresponding entry. The entries are then committed in-order, updating the host-facing consumer pointer with the pointer from the operation table and clearing the active bit in the operation table entry.

Both the queue manager and completion queue manager modules generate notifications during enqueue operations. In a queue manager, when the driver updates a producer pointer on an enabled queue, the module issues a doorbell event that is passed to the transmit schedulers for the associated ports. Similarly, completion queue managers generate events on hardware enqueue operations, which are passed to the event subsystem and ultimately generate interrupts. To reduce the number of events and interrupts, completion queues also have an armed status. An armed completion queue will generate a single event, disarming itself in the process. The driver must re-arm the queue after handling the event.

8.23. rx_checksum

rx_checksum implements the receive checksum offloading support. It computes 16 bit checksum of Ethernet frame payload to aid in IP checksum offloading by the host network stack.

8.24. rx_engine

rx_engine manages receive datapath operations including descriptor dequeue and fetch via DMA, packet reception, data writeback via DMA, and completion enqueue and writeback via DMA. It also handles PTP timestamps for inclusion in completion records.

8.25. rx_hash

rx_hash implements flow hashing on the receive path. It extracts IP addresses and ports from packet headers and computes a 32-bit Toeplitz flow hash.

8.26. tx_checksum

tx_checksum implements the transmit checksum offloading support. It computes 16 bit checksum of frame data with specified start offset, then inserts computed checksum at the position specified by the host network stack.

8.27. tx_engine

tx_engine manages transmit datapath operations including descriptor dequeue and fetch via DMA, packet data fetch via DMA, packet transmission, and completion enqueue and writeback via DMA. It also handles PTP timestamps for inclusion in completion records.

8.28. tx_scheduler_rr

8.28.1. Operation

The default transmit scheduler used in the Corundum NIC is a simple round-robin scheduler implemented in the tx_scheduler_rr module. The scheduler sends commands to the transmit engine to initiate transmit operations out of the NIC transmit queues. The round-robin scheduler contains basic queue state for all queues, a FIFO to store currently-active queues and enforce the round-robin schedule, and an operation table to track in-process transmit operations.

Similar to the queue management logic, the round-robin transmit scheduler also stores queue state information in BRAM or URAM on the FPGA so that it can scale to support a large number of queues. The transmit scheduler also uses a processing pipeline to hide the memory access latency.

The transmit scheduler module has four main interfaces: an AXI lite register interface and three streaming interfaces. The AXI lite interface permits the driver to change scheduler parameters and enable/disable queues. The first streaming interface provides doorbell events from the queue management logic when the driver enqueues packets for transmission. The second streaming interface carries transmit commands generated by the scheduler to the transmit engine. Each command consists of a queue index to transmit from, along with a tag for tracking in-process operations. The final streaming interface returns transmit operation status information back to the scheduler. The status information informs the scheduler of the length of the transmitted packet, or if the transmit operation failed due to an empty or disabled queue.

The transmit scheduler module can be extended or replaced to implement arbitrary scheduling algorithms. This enables Corundum to be used as a platform to evaluate experimental scheduling algorithms. It is also possible to provide additional inputs to the transmit scheduler module, including feedback from the receive path, which can be used to implement new protocols and congestion control techniques. Connecting the scheduler to the PTP hardware clock can be used to support TDMA, which can be used to implement circuit-switched architectures.

The structure of the transmit scheduler logic is similar to the queue management logic in that it stores queue state in BRAM or URAM and uses a processing pipeline. However there are a number of significant differences. First, the scheduler logic is designed so that the scheduler does not stall when a queue is empty and a subsequent dequeue operation fails. Second, the scheduler contains a FIFO to enforce the round-robin schedule. The use of this FIFO requires an explicit reset routine to make the internal state (namely the scheduled flag bits) consistent after a reset. Third, the scheduler also contains logic to track the active state of each queue based on incoming doorbell requests and dequeue failures.

[image: ../_images/corundum_tx_scheduler_block.svg]
Fig. 8.4 Block diagram of the transmit scheduler module, showing queue state RAM and operation table. Ind = index, En = queue enable, GE = global enable, SE = schedule enable, Act = active, Sch = scheduled, QI = queue index, DB = doorbell, H = head, N = next, P = previous

A block diagram of the transmit scheduler module is shown in Fig. 8.4. The transmit scheduler is built around a scheduled queue FIFO. This FIFO stores the indices of the currently-scheduled queues. An active queue is one that is presumed to have at least one packet available for transmission, an enabled queue is one that has been enabled for transmission, and a scheduled queue is one that has an entry in the scheduler FIFO. A queue will be scheduled (marked as scheduled and inserted into the FIFO) if it is both active and enabled. A queue will be descheduled when it reaches the front of the schedule FIFO, but is not enabled or not active. Queue enable states are controlled via three different enable bits per queue: queue enable, global enable, and schedule enable. The queue enable and global enable bits are writable via AXI lite, while the schedule enable bit is controlled from the scheduler control module via an internal interface. A queue is enabled when the queue enable bit and either the global enable or schedule enable bits are set. Queues become active when doorbell events are received, and queues become inactive when a transmit request fails due to an empty queue.

Tracking the queue active states must be done carefully for several reasons. First, the driver can update the producer pointer after enqueuing more than one packet, so the number of generated doorbell events does not necessarily correspond to the number of packets that were enqueued. Second, because the queues are shared among all ports on the same interface, multiple ports can attempt to send packets from the same queue, and the port transmit schedulers have no visibility into what the other schedulers are doing. Therefore, the most reliable method for determining that a queue is empty is to try sending from it, and flagging the failure. Note that the cost of an error is much higher when the queue is active than when the queue is empty. Attempting to send from an empty queue costs a few clock cycles and temporarily occupies a few slots in corresponding operation tables. However, assuming a queue is empty when it is not will result in packets getting stuck in the queue. Fixing this stuck queue will not occur until the OS sends another packet on that queue and triggers another doorbell. Therefore, it is imperative to properly track doorbell events during transmit operations, as it is possible for a doorbell event to arrive after a dequeue attempt has failed, but before the failed transmit status arrives at the transmit scheduler module.

The pipeline in the transmit scheduler supports seven different operations: initialize, register read, register write, handle doorbell, transmit complete, scheduler control, and transmit request. The initialize operation is used to ensure the scheduler state is consistent after a reset. Register access operations over an AXI lite interface enable the driver to read all of the per-queue state and set the queue enable and global enable bits. The pipeline also handles incoming doorbell requests from the transmit queue manager module as well as queue enable/disable requests from the scheduler control module. Finally, the transmit request and transmit complete operations are used to generate transmit requests and handle the necessary queue state updates when the transmit operations complete.

Queues can become scheduled based on a register write that enables an active queue, a doorbell that activates an enabled queue, a scheduler operation that enables an active queue, and a transmit completion on an enabled queue that is either successful or has the doorbell bit set in the operation table. Queues can only be descheduled when the queue index advances to the front of the scheduler FIFO. If this occurs when the queue is both active and enabled, then the queue can be rescheduled and a transmit request generated. When the transmit operation completes, the transmit status response will be temporarily stored in a small FIFO and then processed by the pipeline to update the corresponding operation table entry and, if necessary, reschedule the queue.

The operation table tracks in-process transmit operations. Entries in the table consist of an active flag, the queue index, a doorbell flag, a head flag, a next pointer, and a previous pointer. The next and previous pointers form a linked list, enabling entries to be removed in any order while preserving the doorbell flag in the table. This prevents doorbells from getting ‘lost’ and the queue being mistakenly marked as inactive. A separate linked list is formed for each queue with active transmit operations. The operation table is implemented in such a way that it fits in distributed RAM.

8.28.2. Parameters

	
AXIL_DATA_WIDTH

	Width of AXI lite data bus in bits, default 32.

	
AXIL_ADDR_WIDTH

	Width of AXI lite address bus in bits, default 16.

	
AXIL_STRB_WIDTH

	Width of AXI lite wstrb (width of data bus in words), must be set to AXIL_DATA_WIDTH/8.

	
LEN_WIDTH

	Length field width, default 16.

	
REQ_TAG_WIDTH

	Transmit request tag field width, default 8.

	
OP_TABLE_SIZE

	Number of outstanding operations, default 16.

	
QUEUE_INDEX_WIDTH

	Queue index width, default 6.

	
PIPELINE

	Pipeline setting, default 3.

8.28.3. Ports

	
clk

	Logic clock. Most interfaces are synchronous to this clock.

	Signal

	Dir

	Width

	Description

	clk

	in

	1

	Logic clock

	
rst

	Logic reset, active high

	Signal

	Dir

	Width

	Description

	rst

	in

	1

	Logic reset, active high

	
m_axis_tx_req

	Transmit request output, for transmit requests to the transmit engine.

	Signal

	Dir

	Width

	Description

	m_axis_tx_req_queue

	out

	QUEUE_INDEX_WIDTH

	Queue index

	m_axis_tx_req_tag

	out

	REQ_TAG_WIDTH

	Tag

	m_axis_tx_req_dest

	out

	AXIS_TX_DEST_WIDTH

	Destination port and TC

	m_axis_tx_req_valid

	out

	1

	Valid

	m_axis_tx_req_ready

	in

	1

	Ready

	
s_axis_tx_req_status

	Transmit request status input, for responses from the transmit engine.

	Signal

	Dir

	Width

	Description

	s_axis_tx_req_status_len

	in

	LEN_WIDTH

	Packet length

	s_axis_tx_req_status_tag

	in

	REQ_TAG_WIDTH

	Tag

	s_axis_tx_req_status_valid

	in

	1

	Valid

	
s_axis_doorbell

	Doorbell input, for enqueue notifications from the transmit queue manager.

	Signal

	Dir

	Width

	Description

	s_axis_doorbell_queue

	in

	QUEUE_INDEX_WIDTH

	Queue index

	s_axis_doorbell_valid

	in

	1

	Valid

	
s_axis_sched_ctrl

	Scheduler control input, to permit user logic to dynamically enable/disable queues.

	Signal

	Dir

	Width

	Description

	s_axis_sched_ctrl_queue

	in

	QUEUE_INDEX_WIDTH

	Queue index

	s_axis_sched_ctrl_enable

	in

	1

	Queue enable

	s_axis_sched_ctrl_valid

	in

	1

	Valid

	s_axis_sched_ctrl_ready

	out

	1

	Ready

	
s_axil

	AXI-Lite slave interface. This interface provides access to memory-mapped per-queue control registers.

	Signal

	Dir

	Width

	Description

	s_axil_awaddr

	in

	AXIL_ADDR_WIDTH

	Write address

	s_axil_awprot

	in

	3

	Write protect

	s_axil_awvalid

	in

	1

	Write address valid

	s_axil_awready

	out

	1

	Write address ready

	s_axil_wdata

	in

	AXIL_DATA_WIDTH

	Write data

	s_axil_wstrb

	in

	AXIL_STRB_WIDTH

	Write data strobe

	s_axil_wvalid

	in

	1

	Write data valid

	s_axil_wready

	out

	1

	Write data ready

	s_axil_bresp

	out

	2

	Write response status

	s_axil_bvalid

	out

	1

	Write response valid

	s_axil_bready

	in

	1

	Write response ready

	s_axil_araddr

	in

	AXIL_ADDR_WIDTH

	Read address

	s_axil_arprot

	in

	3

	Read protect

	s_axil_arvalid

	in

	1

	Read address valid

	s_axil_arready

	out

	1

	Read address ready

	s_axil_rdata

	out

	AXIL_DATA_WIDTH

	Read response data

	s_axil_rresp

	out

	2

	Read response status

	s_axil_rvalid

	out

	1

	Read response valid

	s_axil_rready

	in

	1

	Read response ready

	
control

	Control and status signals

	Signal

	Dir

	Width

	Description

	enable

	in

	enable

	Enable

	active

	out

	enable

	Active

9. Register blocks

The NIC register space is constructed from a linked list of register blocks. Each block starts with a header that contains type, version, and next header fields. Blocks must be DWORD aligned in the register space. All fields must be naturally aligned. All pointers in the register blocks are relative to the start of the region. The list is terminated with a next pointer of 0x00000000. See Table 9.1 for a list of all currently-defined register blocks.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO -

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO -

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	
Type

	The type field consists of a vendor ID in the upper 16 bits, and the sub type in the lower 16 bits. Vendor ID 0x0000 is used for all standard register blocks used by Corundum. See Table 9.1 for a list of all currently-defined register blocks.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Vendor ID

	Type

	RO -

	
Version

	The version field consists of four fields, major, minor, patch, and meta. Version numbers must be changed when backwards-incompatible changes are made to register blocks. See Table 9.1 for a list of all currently-defined register blocks.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x04

	Major

	Minor

	Patch

	Meta

	RO -

	
Next pointer

	The next pointer field contains a block-relative offset to the start of the header of the next register block in the chain. A next pointer of 0x00000000 indicates the end of the chain.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x08

	Pointer to next register block

	RO -

Table 9.1 List of all currently-defined register blocks

	Type

	Version

	Block

	0x00000000

	-

	Null register block

	0xFFFFFFFF

	0x00000100

	Firmware ID register block

	0x0000C000

	0x00000100

	Interface register block

	0x0000C001

	0x00000400

	Interface control register block

	0x0000C002

	0x00000200

	Port register block

	0x0000C003

	0x00000200

	Port control register block

	0x0000C004

	0x00000300

	Scheduler block register block

	0x0000C005

	0x00000200

	App info register block

	0x0000C006

	0x00000100

	stats

	0x0000C007

	0x00000100

	IRQ config

	0x0000C008

	0x00000100

	Clock info register block

	0x0000C010

	0x00000400

	Event queue manager register block

	0x0000C020

	0x00000400

	Completion queue manager register block

	0x0000C030

	0x00000400

	Transmit queue manager register block

	0x0000C031

	0x00000400

	Receive queue manager register block

	0x0000C040

	0x00000100

	Round-robin scheduler register block

	0x0000C050

	0x00000100

	TDMA scheduler controller register block

	0x0000C060

	0x00000100

	TDMA scheduler register block

	0x0000C080

	0x00000100

	PTP hardware clock register block

	0x0000C081

	0x00000100

	PTP period output register block

	0x0000C090

	0x00000200

	RX queue map register block

	0x0000C100

	0x00000100

	GPIO register block

	0x0000C110

	0x00000100

	I2C register block

	0x0000C120

	0x00000200

	SPI flash register block

	0x0000C121

	0x00000200

	BPI flash register block

	0x0000C140

	0x00000100

	Alveo BMC register block

	0x0000C141

	0x00000100

	Gecko BMC register block

	0x0000C150

	0x00000100

	DRP register block

9.1. App info register block

The app info register block has a header with type 0x0000C005, version 0x00000200, and contains the app ID of the application section.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C005

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000200

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	App ID

	App ID

	RO -

See Register blocks for definitions of the standard register block header fields.

	
App ID

	The app ID field contains the app ID of the application section.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	App ID

	RO -

9.2. Alveo BMC register block

The Alveo BMC register block has a header with type 0x0000C140, version 0x00000100, and contains control registers for the Xilinx Alveo CMS IP [https://www.xilinx.com/products/intellectual-property/cms-subsystem.html].

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C140

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000100

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	Address

	Address

	RW 0x00000000

	RBB+0x10

	Data

	Data

	RW 0x00000000

See Register blocks for definitions of the standard register block header fields.

	
Address

	The address field controls the address bus to the CMS IP core. Writing to this register triggers a read of the corresponding address via the AXI-lite interface to the CMS IP.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	Address

	RW 0x00000000

	
Data

	The data field controls the data bus to the CMS IP core. Writing to this register triggers a write to the address specified by the address register via the AXI-lite interface to the CMS IP.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x10

	Data

	RW 0x00000000

9.3. Gecko BMC register block

The Gecko BMC register block has a header with type 0x0000C141, version 0x00000100, and contains control registers for the Silicom Gecko BMC.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C141

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000100

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	Status

	Status

	Read data

	RO 0x00000000

	RBB+0x10

	Data

	Write data

	RW 0x00000000

	RBB+0x14

	Command

	Command

	
	RW 0x00000000

See Register blocks for definitions of the standard register block header fields.

	
Status

	The status field provides status information and the read data from the BMC.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	Status

	Read data

	RO 0x00000000

	Bit

	Function

	16

	Done

	18

	Timeout

	19

	Idle

	
Data

	The data field provides the write data to the BMC.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x10

	Write data

	RW 0x00000000

	
Command

	The command field provides the command to the BMC. Writing to the command field triggers an SPI transfer to the BMC.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x14

	Command

	
	RW 0x00000000

9.4. Clock info register block

The clock info register block has a header with type 0x0000C008, version 0x00000100, and contains information about clocks in the design.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C008

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000100

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	Channel count

	Channel count

	RO -

	RBB+0x10

	Ref period

	Ref per num

	Ref per denom

	RO -

	RBB+0x18

	Clk period

	Clk per num

	Clk per denom

	RO -

	RBB+0x1C

	Clk freq

	Core clock frequency (Hz)

	RO -

	RBB+0x20+4n

	Channel freq

	Channel clock frequency (Hz)

	RO -

See Register blocks for definitions of the standard register block header fields.

	
Channel count

	The channel count field contains the number of clocks, excluding the core and reference clocks.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	Channel count

	RO -

	
Reference clock period

	The reference clock period field contains the nominal period of the reference clock in nanoseconds as a fractional value, consisting of a 16-bit numerator and a 16-bit denominator.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x10

	Ref per num

	Ref per denom

	RO -

	
Core clock period

	The core clock period field contains the nominal period of the core clock in nanoseconds as a fractional value, consisting of a 16-bit numerator and a 16-bit denominator.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x18

	Clk per num

	Clk per denom

	RO -

	
Core clock frequency

	The core clock frequency field contains the measured core clock frequency in Hz, measured relative to the reference clock.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x1C

	Core clock frequency (Hz)

	RO -

	
Channel clock frequency

	The channel clock frequency fields contain the measured channel clock frequency in Hz, measured relative to the reference clock. There is one register per channel.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x20+4n

	Channel clock frequency (Hz)

	RO -

9.5. Completion queue manager register block

The completion queue manager register block has a header with type 0x0000C020, version 0x00000400, and indicates the location of the completion queue manager registers and number of completion queues.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C020

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000400

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	Offset

	Offset to queue manager

	RO -

	RBB+0x10

	Count

	Queue count

	RO -

	RBB+0x14

	Stride

	Queue control register stride

	RO 0x00000010

See Register blocks for definitions of the standard register block header fields.

	
Offset

	The offset field contains the offset to the start of the completion queue manager region, relative to the start of the current region.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	Offset to queue manager

	RO -

	
Count

	The count field contains the number of queues.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x10

	Queue count

	RO -

	
Stride

	The stride field contains the size of the control registers associated with each queue.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x14

	Queue control register stride

	RO 0x00000010

9.5.1. Completion queue manager CSRs

Each queue has several associated control registers, detailed in this table:

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	Base+0x00

	Base addr L

	Ring base addr (lower), VF

	RW -

	Base+0x04

	Base addr H

	Ring base addr (upper)

	RW -

	Base+0x08

	Control/status

	Control/status

	EQN

	RO -

	Base+0x0C

	Pointers

	Cons pointer

	Prod pointer

	RO -

	
Base address

	The base address field contains the base address of the ring buffer as well as the VF ID. The base address must be aligned to a 4096 byte boundary and sits in bits 63:12, leaving room for the VF ID in bits 11:0. The base address is read-only when the queue is enabled. The VF ID field is read-only; use the set VF ID command to change the VF ID.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	Base+0x00

	Ring base addr (lower), VF

	RW -

	Base+0x04

	Ring base addr (upper)

	RW -

	
Control/status

	The control/status field contains control and status information for the queue, and the EQN field contains the corresponding event queue number. All fields are read-only; use commands to set the size and EQN and to enable/disable and arm/disarm the queue.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	Base+0x08

	Control/status

	EQN

	RO -

Control/status bit definitions

	Bit

	Function

	0

	Enable

	1

	Arm

	3

	Active

	15:12

	Log size

	
Pointers

	The pointers field contains the queue producer and consumer pointers. Bits 15:0 are the producer pointer, while bits 31:16 are the consumer pointer. Both fields are read-only; use the set prod and cons pointer commands to update the pointers.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	Base+0x0C

	Cons pointer

	Prod pointer

	RO -

9.5.2. Completion queue manager commands

	Command

	31..24

	23..16

	15..8

	7..0

	Set VF ID

	0x8001

	VF ID

	Set size

	0x8002

	Log size

	Set EQN

	0xC0

	EQN

	Set prod pointer

	0x8080

	Prod pointer

	Set cons pointer

	0x8090

	Cons pointer

	Set cons pointer, arm

	0x8091

	Cons pointer

	Set enable

	0x400001

	Enable

	Set arm

	0x400002

	Arm

	
Set VF ID

	The set VF ID command is used to set the VF ID for the queue. Allowed when queue is disabled and inactive.

	31..24

	23..16

	15..8

	7..0

	0x8001

	VF ID

	
Set size

	The set size command is used to set the size of the ring buffer as the log base 2 of the number of elements. Allowed when queue is disabled and inactive.

	31..24

	23..16

	15..8

	7..0

	0x8002

	Log size

	
Set EQN

	The set EQN command is used to set the EQN for events generated by the queue. Allowed when queue is disabled and inactive.

	31..24

	23..16

	15..8

	7..0

	0xC0

	EQN

	
Set prod pointer

	The set producer pointer command is used to set the queue producer pointer. Allowed when queue is disabled and inactive.

	31..24

	23..16

	15..8

	7..0

	0x8080

	Prod pointer

	
Set cons pointer

	The set consumer pointer command is used to set the queue consumer pointer. Allowed at any time.

	31..24

	23..16

	15..8

	7..0

	0x8090

	Cons pointer

	
Set cons pointer, arm

	The set consumer pointer, arm command is used to set the queue consumer pointer and simultaneously re-arm the queue. Allowed at any time.

	31..24

	23..16

	15..8

	7..0

	0x8091

	Cons pointer

	
Set enable

	The set enable command is used to enable or disable the queue. Allowed at any time.

	31..24

	23..16

	15..8

	7..0

	0x400001

	Enable

	
Set arm

	The set arm command is used to arm or disarm the queue. Allowed at any time.

	31..24

	23..16

	15..8

	7..0

	0x400002

	Arm

9.6. DRP register block

The DRP register block has a header with type 0x0000C150, version 0x00000100, and contains control registers for a Xilinx dynamic reconfiguration port (DRP).

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C150

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000100

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	DRP info

	DRP info

	RO -

	RBB+0x10

	Control

	Control

	RW 0x00000000

	RBB+0x14

	Address

	Address

	RW 0x00000000

	RBB+0x18

	Write data

	Write data

	RW 0x00000000

	RBB+0x1C

	Read data

	Read data

	RO 0x00000000

See Register blocks for definitions of the standard register block header fields.

	
DRP info

	The DRP info field contains identifying information about the component(s) accessible via the DRP interface.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	DRP info

	RO -

	
Control

	The control field is used to trigger read and write operations on the DRP interface.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x10

	Control

	RW 0x00000000

	Bit

	Function

	0

	Enable

	1

	Write

	8

	Busy

To issue a read operation, set the address register and then write 0x00000001 to the control register. Wait for the enable and busy bits to self-clear, then read the data from the read data register.

To issue a write operation, set the address register and write data register appropriately, then write 0x00000003 to the control register. Wait for the enable and busy bits to self-clear.

	
Address

	The address field controls the address for DRP operations. This address is directly presented on the DRP interface.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x14

	Address

	RW 0x00000000

	
Write data

	The write data field contains the data used for DRP write operations.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x18

	Write data

	RW 0x00000000

	
Read data

	The read data field contains the data returned by DRP read operations.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x1C

	Read data

	RO 0x00000000

9.7. Event queue manager register block

The event queue manager register block has a header with type 0x0000C010, version 0x00000300, and indicates the location of the event queue manager registers and number of event queues.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C010

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000400

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	Offset

	Offset to queue manager

	RO -

	RBB+0x10

	Count

	Queue count

	RO -

	RBB+0x14

	Stride

	Queue control register stride

	RO 0x00000010

See Register blocks for definitions of the standard register block header fields.

	
Offset

	The offset field contains the offset to the start of the event queue manager region, relative to the start of the current region.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	Offset to queue manager

	RO -

	
Count

	The count field contains the number of queues.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x10

	Queue count

	RO -

	
Stride

	The stride field contains the size of the control registers associated with each queue.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x14

	Queue control register stride

	RO 0x00000010

9.7.1. Event queue manager CSRs

Each queue has several associated control registers, detailed in this table:

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	Base+0x00

	Base addr L

	Ring base addr (lower), VF

	RW -

	Base+0x04

	Base addr H

	Ring base addr (upper)

	RW -

	Base+0x08

	Control/status

	Control/status

	IRQN

	RO -

	Base+0x0C

	Pointers

	Cons pointer

	Prod pointer

	RO -

	
Base address

	The base address field contains the base address of the ring buffer as well as the VF ID. The base address must be aligned to a 4096 byte boundary and sits in bits 63:12, leaving room for the VF ID in bits 11:0. The base address is read-only when the queue is enabled. The VF ID field is read-only; use the set VF ID command to change the VF ID.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	Base+0x00

	Ring base addr (lower), VF

	RW -

	Base+0x04

	Ring base addr (upper)

	RW -

	
Control/status

	The control/status field contains control and status information for the queue, and the IRQN field contains the corresponding IRQ number. All fields are read-only; use commands to set the size and IRQN and to enable/disable and arm/disarm the queue.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	Base+0x08

	Control/status

	IRQN

	RO -

Control/status bit definitions

	Bit

	Function

	0

	Enable

	1

	Arm

	3

	Active

	15:12

	Log size

	
Pointers

	The pointers field contains the queue producer and consumer pointers. Bits 15:0 are the producer pointer, while bits 31:16 are the consumer pointer. Both fields are read-only; use the set prod and cons pointer commands to update the pointers.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	Base+0x0C

	Cons pointer

	Prod pointer

	RO -

9.7.2. Event queue manager commands

	Command

	31..24

	23..16

	15..8

	7..0

	Set VF ID

	0x8001

	VF ID

	Set size

	0x8002

	Log size

	Set IRQN

	0xC0

	IRQN

	Set prod pointer

	0x8080

	Prod pointer

	Set cons pointer

	0x8090

	Cons pointer

	Set cons pointer, arm

	0x8091

	Cons pointer

	Set enable

	0x400001

	Enable

	Set arm

	0x400002

	Arm

	
Set VF ID

	The set VF ID command is used to set the VF ID for the queue. Allowed when queue is disabled and inactive.

	31..24

	23..16

	15..8

	7..0

	0x8001

	VF ID

	
Set size

	The set size command is used to set the size of the ring buffer as the log base 2 of the number of elements. Allowed when queue is disabled and inactive.

	31..24

	23..16

	15..8

	7..0

	0x8002

	Log size

	
Set IRQN

	The set IRQN command is used to set the IRQ number for interrupts generated by the queue. Allowed when queue is disabled and inactive.

	31..24

	23..16

	15..8

	7..0

	0xC0

	IRQN

	
Set prod pointer

	The set producer pointer command is used to set the queue producer pointer. Allowed when queue is disabled and inactive.

	31..24

	23..16

	15..8

	7..0

	0x8080

	Prod pointer

	
Set cons pointer

	The set consumer pointer command is used to set the queue consumer pointer. Allowed at any time.

	31..24

	23..16

	15..8

	7..0

	0x8090

	Cons pointer

	
Set cons pointer, arm

	The set consumer pointer, arm command is used to set the queue consumer pointer and simultaneously re-arm the queue. Allowed at any time.

	31..24

	23..16

	15..8

	7..0

	0x8091

	Cons pointer

	
Set enable

	The set enable command is used to enable or disable the queue. Allowed at any time.

	31..24

	23..16

	15..8

	7..0

	0x400001

	Enable

	
Set arm

	The set arm command is used to arm or disarm the queue. Allowed at any time.

	31..24

	23..16

	15..8

	7..0

	0x400002

	Arm

9.8. BPI flash register block

The BPI flash register block has a header with type 0x0000C121, version 0x00000200, and contains control registers for a BPI flash chip.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C121

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000100

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	Format

	Format

	RO -

	RBB+0x10

	Address

	Address

	RW 0x00000000

	RBB+0x14

	Data

	Data

	RW 0x00000000

	RBB+0x18

	Control

	
	REGION

	DQ_OE

	CTRL

	RW 0x0000000F

See Register blocks for definitions of the standard register block header fields.

	
Format

	The format field contains information about the type and layout of the flash memory. Bits 3:0 carry the number of segments. Bits 7:4 carry the index of the default segment that carries the main FPGA configuration. Bits 11:8 carry the index of the segment that contains a fallback FPGA configuration that is loaded if the configuration in the default segment fails to load. Bits 31:12 contain the size of the first segment in increments of 4096 bytes, for two-segment configurations with an uneven split. This field can be set to zero for an even split computed from the flash device size.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	Format

	
	
	
	RO -

	bits

	Configuration

	3:0

	Segment count

	7:4

	Default segment

	11:8

	Fallback segment

	31:12

	First segment size

	
Address

	The address field controls the address bus to the flash chip.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x10

	Address

	RW 0x00000000

	
Data

	The data field controls the data bus to the flash chip.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x14

	Data

	RW 0x00000000

	
Control

	The control field contains registers to drive all of the other flash control lines, as well as registers for output enables.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x18

	
	REGION

	DQ_OE

	CTRL

	RW 0x0000000F

	Bit

	Function

	0

	CE_N

	1

	OE_N

	2

	WE_N

	3

	ADV_N

	8

	DQ_OE

	16

	REGION_OE

9.9. SPI flash register block

The SPI flash register block has a header with type 0x0000C120, version 0x00000200, and contains control registers for up to two SPI or QSPI flash chips.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C120

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000100

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	Format

	Format

	RO -

	RBB+0x10

	Control 0

	
	CS/CLK

	OE

	D

	RW 0x00000000

	RBB+0x14

	Control 1

	
	CS/CLK

	OE

	D

	RW 0x00000000

See Register blocks for definitions of the standard register block header fields.

	
Format

	The format field contains information about the type and layout of the flash memory. Bits 3:0 carry the number of segments. Bits 7:4 carry the index of the default segment that carries the main FPGA configuration. Bits 11:8 carry the index of the segment that contains a fallback FPGA configuration that is loaded if the configuration in the default segment fails to load. Bits 31:12 contain the size of the first segment in increments of 4096 bytes, for two-segment configurations with an uneven split. This field can be set to zero for an even split computed from the flash device size.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	Format

	
	
	
	RO -

	bits

	Configuration

	3:0

	Segment count

	7:4

	Default segment

	11:8

	Fallback segment

	31:12

	First segment size

	
Control 0 and 1

	The control 0 and 1 fields each control one SPI/QSPI flash interface. The second interface is only used in dual QSPI mode.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x10

	
	CS/CLK

	OE

	D

	RW 0x00000000

	RBB+0x14

	
	CS/CLK

	OE

	D

	RW 0x00000000

	Bit

	Function

	0

	D0

	1

	D1

	2

	D2

	3

	D3

	8

	OE for D0

	9

	OE for D1

	10

	OE for D2

	11

	OE for D3

	16

	CLK

	17

	CS_N

9.10. Firmware ID register block

The firmware ID register block has a header with type 0xFFFFFFFF, version 0x00000100, and carries several pieces of information related to the firmware version and build.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0xFFFFFFFF

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000100

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	FPGA ID

	JTAG ID

	RO -

	RBB+0x10

	FW ID

	Vendor ID

	Firmware ID

	RO -

	RBB+0x14

	FW Version

	Major

	Minor

	Patch

	Meta

	RO -

	RBB+0x18

	Board ID

	Vendor ID

	Board ID

	RO -

	RBB+0x1C

	Board Version

	Major

	Minor

	Patch

	Meta

	RO -

	RBB+0x20

	Build date

	Build date

	RO -

	RBB+0x24

	Git hash

	Commit hash

	RO -

	RBB+0x28

	Release info

	Release info

	RO -

See Register blocks for definitions of the standard register block header fields.

	
FPGA ID

	The FPGA ID field contains the JTAG ID of the target device.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	JTAG ID

	RO -

	
Firmware ID

	The firmware ID field consists of a vendor ID in the upper 16 bits, and the firmware ID in the lower 16 bits.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x10

	Vendor ID

	Firmware ID

	RO -

	
Firmware version

	The firmware version field consists of four fields, major, minor, patch, and meta.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x14

	Major

	Minor

	Patch

	Meta

	RO -

	
Board ID

	The board ID field consists of a vendor ID in the upper 16 bits, and the board ID in the lower 16 bits.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x18

	Vendor ID

	Board ID

	RO -

	
Board version

	The board version field consists of four fields, major, minor, patch, and meta.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x1C

	Major

	Minor

	Patch

	Meta

	RO -

	
Build date

	The build date field contains the Unix timestamp of the start of the build as an unsigned 32-bit integer.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x20

	Build date

	RO -

	
Git hash

	The git hash field contains the upper 32 bits of the git commit hash.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x24

	Commit hash

	RO -

	
Release info

	The release info field is reserved for additional release information.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x28

	Release info

	RO -

9.11. GPIO register block

The GPIO register block has a header with type 0x0000C100, version 0x00000100, and contains GPIO control registers.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C100

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000100

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	GPIO in

	GPIO in

	RO -

	RBB+0x10

	GPIO out

	GPIO out

	RW -

See Register blocks for definitions of the standard register block header fields.

	
GPIO in

	The GPIO in field reads the input signal states.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	GPIO in

	RO -

	
GPIO out

	The GPIO out field controls the output signal states.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x10

	GPIO out

	RW -

9.12. I2C register block

The I2C register block has a header with type 0x0000C110, version 0x00000100, and contains registers to control an I2C interface.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C110

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000100

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	Control

	Mux control

	SDA

	SCL

	RW 0x00000303

See Register blocks for definitions of the standard register block header fields.

	
Control

	The control field has bits to control SCL, SDA, and any associated multiplexers/switches.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	Mux control

	SDA

	SCL

	RW 0x00000303

	Bit

	Function

	0

	SCL in

	1

	SCL out

	8

	SDA in

	9

	SDA out

9.13. Interface register block

The interface register block has a header with type 0x0000C000, version 0x00000100, and indicates the number of interfaces present and where they are located in the control register space.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C000

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000100

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	Offset

	Offset to first interface

	RO -

	RBB+0x10

	Count

	Interface count

	RO -

	RBB+0x14

	Stride

	Interface stride

	RO -

	RBB+0x18

	CSR offset

	Interface CSR offset

	RO -

See Register blocks for definitions of the standard register block header fields.

	
Offset

	The offset field contains the offset to the start of the first interface region, relative to the start of the current region.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	Offset to first interface

	RO -

	
Count

	The count field contains the number of interfaces.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x10

	Interface count

	RO -

	
Stride

	The stride field contains the size of the region for each interface.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x14

	Interface stride

	RO -

	
CSR offset

	The CSR offset field contains the offset to the head of the register block chain inside of each interface’s region.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x18

	Interface CSR offset

	RO -

9.14. Interface control register block

The interface control register block has a header with type 0x0000C001, version 0x00000400, and contains several interface-level control registers.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C001

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000300

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	Features

	Interface feature bits

	RO -

	RBB+0x10

	Port count

	Port count

	RO -

	RBB+0x14

	Sched count

	Scheduler block count

	RO -

	RBB+0x18

	-

	-

	RO -

	RBB+0x1C

	-

	-

	RO -

	RBB+0x20

	Max TX MTU

	Max TX MTU

	RO -

	RBB+0x24

	Max RX MTU

	Max RX MTU

	RO -

	RBB+0x28

	TX MTU

	TX MTU

	RW -

	RBB+0x2C

	RX MTU

	RX MTU

	RW -

See Register blocks for definitions of the standard register block header fields.

	
Features

	The features field contains all of the interface-level feature bits, indicating the state of various optional features that can be enabled via Verilog parameters during synthesis.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	Interface feature bits

	RO -

Currently implemented feature bits:

	Bit

	Feature

	0

	RSS

	4

	PTP timestamping

	8

	TX checksum offloading

	9

	RX checksum offloading

	10

	RX flow hash offloading

	
Port count

	The port count field contains the number of ports associated with the interface, as configured via Verilog parameters during synthesis.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x10

	Port count

	RO -

	
Scheduler block count

	The scheduler block count field contains the number of scheduler blocks associated with the interface, as configured via Verilog parameters during synthesis.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x14

	Scheduler block count

	RO -

	
Max TX MTU

	The max TX MTU field contains the maximum frame size on the transmit path, as configured via Verilog parameters during synthesis.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x20

	Max TX MTU

	RO -

	
Max RX MTU

	The max RX MTU field contains the maximum frame size on the receive path, as configured via Verilog parameters during synthesis.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x24

	Max RX MTU

	RO -

	
TX MTU

	The TX MTU field controls the maximum frame size on the transmit path.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x28

	TX MTU

	RW -

	
RX MTU

	The RX MTU field controls the maximum frame size on the receive path.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x2C

	RX MTU

	RW -

9.15. Null register block

The null register block has a header with type 0x00000000 and no additional fields after the header.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x00000000

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO -

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

See Register blocks for definitions of the standard register block header fields.

9.16. PTP hardware clock register block

The PTP hardware clock register block has a header with type 0x0000C080, version 0x00000100, and carries several control registers for the PTP clock.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C080

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000100

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	Control

	Control

	RO -

	RBB+0x10

	Current time

	Current time (fractional ns)

	RO -

	RBB+0x14

	Current time

	Current time (ns)

	RO -

	RBB+0x18

	Current time

	Current time (sec, lower 32)

	RO -

	RBB+0x1C

	Current time

	Current time (sec, upper 32)

	RO -

	RBB+0x20

	Get time

	Get time (fractional ns)

	RO -

	RBB+0x24

	Get time

	Get time (ns)

	RO -

	RBB+0x28

	Get time

	Get time (sec, lower 32)

	RO -

	RBB+0x2C

	Get time

	Get time (sec, upper 32)

	RO -

	RBB+0x30

	Set time

	Set time (fractional ns)

	RW -

	RBB+0x34

	Set time

	Set time (ns)

	RW -

	RBB+0x38

	Set time

	Set time (sec, lower 32)

	RW -

	RBB+0x3C

	Set time

	Set time (sec, upper 32)

	RW -

	RBB+0x40

	Period

	Period (fractional ns)

	RW -

	RBB+0x44

	Period

	Period (ns)

	RW -

	RBB+0x48

	Nominal period

	Nominal period (fractional ns)

	RO -

	RBB+0x4C

	Nominal period

	Nominal period (ns)

	RO -

	RBB+0x50

	Adj time

	Adj time (fractional ns)

	RW -

	RBB+0x54

	Adj time

	Adj time (ns)

	RW -

	RBB+0x58

	Adj time count

	Adj time cycle count

	RW -

	RBB+0x5C

	Adj time act

	Adj time active

	RO -

See Register blocks for definitions of the standard register block header fields.

	
Current time

	The current time registers read the current time from the PTP clock, with no double-buffering.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x10

	Current time (fractional ns)

	RO -

	RBB+0x14

	Current time (ns)

	RO -

	RBB+0x18

	Current time (sec, lower 32)

	RO -

	RBB+0x1C

	Current time (sec, upper 32)

	RO -

	
Get time

	The get time registers read the current time from the PTP clock, with all values latched coincident with reading the fractional ns register.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x20

	Get time (fractional ns)

	RO -

	RBB+0x24

	Get time (ns)

	RO -

	RBB+0x28

	Get time (sec, lower 32)

	RO -

	RBB+0x2C

	Get time (sec, upper 32)

	RO -

	
Set time

	The set time registers set the current time on the PTP clock, with all values latched coincident with writing the upper 32 bits of the seconds field.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x30

	Set time (fractional ns)

	RW -

	RBB+0x34

	Set time (ns)

	RW -

	RBB+0x38

	Set time (sec, lower 32)

	RW -

	RBB+0x3C

	Set time (sec, upper 32)

	RW -

	
Period

	The period registers control the period of the PTP clock, with all values latched coincident with writing the ns field. The period value is accumulated into the PTP clock on every clock cycle.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x40

	Period (fractional ns)

	RW -

	RBB+0x44

	Period (ns)

	RW -

	
Nominal period

	The nominal period registers contain the nominal period of the PTP clock, which corresponds to zero frequency offset in the ideal case.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x48

	Nominal period (fractional ns)

	RO -

	RBB+0x4C

	Nominal period (ns)

	RO -

	
Adjust time

	The adjust time registers can be used to slew the clock over some time period. An adjustment can be specified with some amount of time added every clock cycle for N cycles.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x50

	Adj time (fractional ns)

	RW -

	RBB+0x54

	Adj time (ns)

	RW -

	RBB+0x58

	Adj time cycle count

	RW -

	RBB+0x5C

	Adj time active

	RO -

9.17. PTP period output register block

The PTP period output register block has a header with type 0x0000C081, version 0x00000100, and carries several control registers for the PTP period output module.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C081

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000100

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	Control

	Control

	RW -

	RBB+0x10

	Start time

	Start time (fractional ns)

	RW -

	RBB+0x14

	Start time

	Start time (ns)

	RW -

	RBB+0x18

	Start time

	Start time (sec, lower 32)

	RW -

	RBB+0x1C

	Start time

	Start time (sec, upper 32)

	RW -

	RBB+0x20

	Period

	Period (fractional ns)

	RW -

	RBB+0x24

	Period

	Period (ns)

	RW -

	RBB+0x28

	Period

	Period (sec, lower 32)

	RW -

	RBB+0x2C

	Period

	Period (sec, upper 32)

	RW -

	RBB+0x30

	Width

	Width (fractional ns)

	RW -

	RBB+0x34

	Width

	Width (ns)

	RW -

	RBB+0x38

	Width

	Width (sec, lower 32)

	RW -

	RBB+0x3C

	Width

	Width (sec, upper 32)

	RW -

See Register blocks for definitions of the standard register block header fields.

	
Control

	The control register contains several control and status bits relating to the operation of the period output module.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	Control

	RW -

	Bit

	Function

	0

	Enable

	8

	Pulse

	16

	Locked

	24

	Error

The enable bit enables/disables output of the period output module. Note that this bit does not cause the module to lose lock when clear, only to stop generating pulses.

The pulse bit reflects the current output of the PTP period output module.

The locked bit indicates that the period output module has locked on to the current PTP time and is ready to generate pulses. The output is disabled while the period output module is unlocked, so it is not necessary to wait for the module to lock before enabling the output. The module will unlock whenever the start time, period, or width setting is changed.

The error bit indicates that the period output module came out of lock due to the PTP clock being stepped. The error bit is self-clearing on either reacquisition of lock or a setting change.

The period output module keeps track of the times for the next rising edge and next falling edge. Initially, it starts with the specified start time for the rising edge, and start time plus width for the falling edge. If the computed next rising edge time is in the past, the period will be added and it will be checked again, repeating this process until the next rising edge is in the future. Note that the period is added once per clock cycle, so it is recommended to compute a start time that is close to the current time, particularly when using a small period setting, so that the period output module can lock quickly.

	
Start time

	The start time registers determine the absolute start time for the output waveform (rising edge), with all values latched coincident with writing the upper 32 bits of the seconds field.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x10

	Start time (fractional ns)

	RW -

	RBB+0x14

	Start time (ns)

	RW -

	RBB+0x18

	Start time (sec, lower 32)

	RW -

	RBB+0x1C

	Start time (sec, upper 32)

	RW -

	
Period

	The period registers control the period of the output waveform (rising edge to rising edge), with all values latched coincident with writing the upper 32 bits of the seconds field.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x20

	Period (fractional ns)

	RW -

	RBB+0x24

	Period (ns)

	RW -

	RBB+0x28

	Period (sec, lower 32)

	RW -

	RBB+0x2C

	Period (sec, upper 32)

	RW -

	
Width

	The width registers control the width of the output waveform (rising edge to falling edge), with all values latched coincident with writing the upper 32 bits of the seconds field.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x30

	Width (fractional ns)

	RW -

	RBB+0x34

	Width (ns)

	RW -

	RBB+0x38

	Width (sec, lower 32)

	RW -

	RBB+0x3C

	Width (sec, upper 32)

	RW -

9.18. Port register block

The port register block has a header with type 0x0000C002, version 0x00000200, and indicates where the port control register blocks are located in the control register space.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C002

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000200

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	Offset

	Offset to port region

	RO -

See Register blocks for definitions of the standard register block header fields.

	
Offset

	The offset field contains the offset to the start of the port region, relative to the start of the current region.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	Offset to port region

	RO -

9.19. Port control register block

The port control register block has a header with type 0x0000C003, version 0x00000200, and contains several port-level control registers.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C003

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000200

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	Features

	Port feature bits

	RO -

	RBB+0x10

	TX status

	TX status

	RO -

	RBB+0x14

	RX status

	RX status

	RO -

See Register blocks for definitions of the standard register block header fields.

	
Features

	The features field contains all of the port-level feature bits, indicating the state of various optional features that can be enabled via Verilog parameters during synthesis.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	Interface feature bits

	RO -

Currently implemented feature bits:

	Bit

	Feature

	-

	None implemented

	
TX status

	The TX status field contains some high-level status information about the transmit size of the link associated with the port.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x10

	TX status

	RO -

Status bits:

	Bit

	Function

	0

	TX status (link is ready)

	1

	TX reset status (MAC TX is in reset)

	
RX status

	The RX status field contains some high-level status information about the receive side of the link associated with the port.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x14

	RX status

	RO -

Status bits:

	Bit

	Function

	0

	RX status (link is ready)

	1

	RX reset status (MAC RX is in reset)

9.20. Receive queue manager register block

The receive queue manager register block has a header with type 0x0000C031, version 0x00000400, and indicates the location of the receive queue manager registers and number of queues.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C031

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000400

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	Offset

	Offset to queue manager

	RO -

	RBB+0x10

	Count

	Queue count

	RO -

	RBB+0x14

	Stride

	Queue control register stride

	RO 0x00000020

See Register blocks for definitions of the standard register block header fields.

	
Offset

	The offset field contains the offset to the start of the receive queue manager region, relative to the start of the current region.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	Offset to queue manager

	RO -

	
Count

	The count field contains the number of queues.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x10

	Queue count

	RO -

	
Stride

	The stride field contains the size of the control registers associated with each queue.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x14

	Queue control register stride

	RO 0x00000020

9.20.1. Queue manager CSRs

Each queue has several associated control registers, detailed in this table:

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	Base+0x00

	Base addr L

	Ring base addr (lower), VF

	RW -

	Base+0x04

	Base addr H

	Ring base addr (upper)

	RW -

	Base+0x08

	Control/status

	Control/status

	RO -

	Base+0x0C

	Config

	Size

	CQN

	RO -

	Base+0x10

	Pointers

	Cons pointer

	Prod pointer

	RO -

	
Base address

	The base address field contains the base address of the ring buffer as well as the VF ID. The base address must be aligned to a 4096 byte boundary and sits in bits 63:12, leaving room for the VF ID in bits 11:0. The base address is read-only when the queue is enabled. The VF ID field is read-only; use the set VF ID command to change the VF ID.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	Base+0x00

	Ring base addr (lower), VF

	RW -

	Base+0x04

	Ring base addr (upper)

	RW -

	
Control/status

	The control/status field contains control and status information for the queue. All fields are read-only; use commands to enable/disable the queue.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	Base+0x08

	Control/status

	RO -

Control/status bit definitions

	Bit

	Function

	0

	Enable

	3

	Active

	
Config

	The size field contains the size of the queue, and the CQN field contains the corresponding completion queue number. All fields are read-only; use commands to set the size and CQN.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	Base+0x0C

	Size

	CQN

	RO -

	
Pointers

	The pointers field contains the queue producer and consumer pointers. Bits 15:0 are the producer pointer, while bits 31:16 are the consumer pointer. Both fields are read-only; use the set prod and cons pointer commands to update the pointers.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	Base+0x10

	Cons pointer

	Prod pointer

	RO -

9.20.2. Queue manager commands

Commands are used to control various aspects of queue state in an atomic manner. Commands can be written to any of the read-only registers associated with the queue (control/status, config, and pointers).

	Command

	31..24

	23..16

	15..8

	7..0

	Set VF ID

	0x8001

	VF ID

	Set size

	0x8002

	size

	Set CQN

	0xC0

	CQN

	Set prod pointer

	0x8080

	Prod pointer

	Set cons pointer

	0x8090

	Cons pointer

	Set enable

	0x400001

	Enable

	
Set VF ID

	The set VF ID command is used to set the VF ID for the queue. Allowed when queue is disabled and inactive.

	31..24

	23..16

	15..8

	7..0

	0x8001

	VF ID

	
Set size

	The set size command is used to set the size of the ring buffer as the log base 2 of the number of elements. Allowed when queue is disabled and inactive.

	31..24

	23..16

	15..8

	7..0

	0x8002

	Log size

	
Set CQN

	The set CQN command is used to set the CQN for completions generated by the queue. Allowed when queue is disabled and inactive.

	31..24

	23..16

	15..8

	7..0

	0xC0

	CQN

	
Set prod pointer

	The set producer pointer command is used to set the queue producer pointer. Allowed at any time.

	31..24

	23..16

	15..8

	7..0

	0x8080

	Prod pointer

	
Set cons pointer

	The set consumer pointer command is used to set the queue consumer pointer. Allowed when queue is disabled and inactive.

	31..24

	23..16

	15..8

	7..0

	0x8090

	Cons pointer

	
Set enable

	The set enable command is used to enable or disable the queue. Allowed at any time.

	31..24

	23..16

	15..8

	7..0

	0x400001

	Enable

9.21. Transmit queue manager register block

The transmit queue manager register block has a header with type 0x0000C030, version 0x00000400, and indicates the location of the transmit queue manager registers and number of queues.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C030

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000400

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	Offset

	Offset to queue manager

	RO -

	RBB+0x10

	Count

	Queue count

	RO -

	RBB+0x14

	Stride

	Queue control register stride

	RO 0x00000020

See Register blocks for definitions of the standard register block header fields.

	
Offset

	The offset field contains the offset to the start of the transmit queue manager region, relative to the start of the current region.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	Offset to queue manager

	RO -

	
Count

	The count field contains the number of queues.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x10

	Queue count

	RO -

	
Stride

	The stride field contains the size of the control registers associated with each queue.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x14

	Queue control register stride

	RO 0x00000020

9.21.1. Queue manager CSRs

Each queue has several associated control registers, detailed in this table:

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	Base+0x00

	Base addr L

	Ring base addr (lower), VF

	RW -

	Base+0x04

	Base addr H

	Ring base addr (upper)

	RW -

	Base+0x08

	Control/status

	Control/status

	RO -

	Base+0x0C

	Config

	Size

	CQN

	RO -

	Base+0x10

	Pointers

	Cons pointer

	Prod pointer

	RO -

	
Base address

	The base address field contains the base address of the ring buffer as well as the VF ID. The base address must be aligned to a 4096 byte boundary and sits in bits 63:12, leaving room for the VF ID in bits 11:0. The base address is read-only when the queue is enabled. The VF ID field is read-only; use the set VF ID command to change the VF ID.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	Base+0x00

	Ring base addr (lower), VF

	RW -

	Base+0x04

	Ring base addr (upper)

	RW -

	
Control/status

	The control/status field contains control and status information for the queue. All fields are read-only; use commands to enable/disable the queue.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	Base+0x08

	Control/status

	RO -

Control/status bit definitions

	Bit

	Function

	0

	Enable

	3

	Active

	
Config

	The size field contains the size of the queue, and the CQN field contains the corresponding completion queue number. All fields are read-only; use commands to set the size and CQN.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	Base+0x0C

	Size

	CQN

	RO -

	
Pointers

	The pointers field contains the queue producer and consumer pointers. Bits 15:0 are the producer pointer, while bits 31:16 are the consumer pointer. Both fields are read-only; use the set prod and cons pointer commands to update the pointers.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	Base+0x10

	Cons pointer

	Prod pointer

	RO -

9.21.2. Queue manager commands

Commands are used to control various aspects of queue state in an atomic manner. Commands can be written to any of the read-only registers associated with the queue (control/status, config, and pointers).

	Command

	31..24

	23..16

	15..8

	7..0

	Set VF ID

	0x8001

	VF ID

	Set size

	0x8002

	size

	Set CQN

	0xC0

	CQN

	Set prod pointer

	0x8080

	Prod pointer

	Set cons pointer

	0x8090

	Cons pointer

	Set enable

	0x400001

	Enable

	
Set VF ID

	The set VF ID command is used to set the VF ID for the queue. Allowed when queue is disabled and inactive.

	31..24

	23..16

	15..8

	7..0

	0x8001

	VF ID

	
Set size

	The set size command is used to set the size of the ring buffer as the log base 2 of the number of elements. Allowed when queue is disabled and inactive.

	31..24

	23..16

	15..8

	7..0

	0x8002

	Log size

	
Set CQN

	The set CQN command is used to set the CQN for completions generated by the queue. Allowed when queue is disabled and inactive.

	31..24

	23..16

	15..8

	7..0

	0xC0

	CQN

	
Set prod pointer

	The set producer pointer command is used to set the queue producer pointer. Allowed at any time.

	31..24

	23..16

	15..8

	7..0

	0x8080

	Prod pointer

	
Set cons pointer

	The set consumer pointer command is used to set the queue consumer pointer. Allowed when queue is disabled and inactive.

	31..24

	23..16

	15..8

	7..0

	0x8090

	Cons pointer

	
Set enable

	The set enable command is used to enable or disable the queue. Allowed at any time.

	31..24

	23..16

	15..8

	7..0

	0x400001

	Enable

9.22. RX queue map register block

The RX queue map register block has a header with type 0x0000C090, version 0x00000200, and is used to control the mapping of packets into RX queues.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C090

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000200

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	Config

	
	
	Tbl sz

	Ports

	RO -

	RBB+0x10+16n

	Port offset

	Port indirection table offset

	RO -

	RBB+0x14+16n

	Port RSS mask

	Port RSS mask

	RW 0x00000000

	RBB+0x18+16n

	Port app mask

	Port app mask

	RW 0x00000000

See Register blocks for definitions of the standard register block header fields.

There is one set of registers per port, with the source port for each packet determined by the tid field, which is set in the RX FIFO subsystem to identify the source port when data is aggregated from multiple ports. For each packet, the tdest field (provided by custom logic in the application section) and flow hash (computed in rx_hash in mqnic_ingress) are combined according to:

if (app_direct_enable[tid] && tdest[DEST_WIDTH-1]) begin
 queue_index = tdest;
end else begin
 queue_index = indir_table[tid][(tdest & app_mask[tid]) + (rss_hash & rss_mask[tid])];
end

The goal of this setup is to enable any combination of flow hashing and custom application logic to influence queue selection, under the direction of host software.

	
Config

	The port count field contains information about the queue mapping configuration. The ports field contains the number of ports, while the table size field contains the log of the number of entries in the indirection table.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	
	
	Tbl sz

	Ports

	RO -

	
Port indirection table offset

	The port indirection table offset field contains the offset to the start of the indirection table region, relative to the start of the current region. The indirection table itself is an array of 32-bit words, which should be loaded with the

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x10+16n

	Port indirection table offset

	RO -

	
Port RSS mask

	The port RSS mask field contains a mask value to select a portion of the RSS flow hash.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x14+16n

	Port RSS mask

	RW 0x00000000

	
Port app mask

	The port app mask field contains a mask value to select a portion of the application-provided tdest value. Bit 31 of this register controls the application section’s ability to directly select a destination queue. If bit 31 is set, the application section can set the MSB of tdest to pass through the rest of tdest without modification.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x18+16n

	Port app mask

	RW 0x00000000

9.23. Scheduler block register block

The scheduler block register block has a header with type 0x0000C004, version 0x00000300, and indicates the offset to the scheduler block control registers.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C004

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000300

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	Offset

	Offset to scheduler block CSRs

	RO -

See Register blocks for definitions of the standard register block header fields.

	
Offset

	The offset field contains the offset to the start of scheduler block control registers, relative to the start of the current region.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	Offset to scheduler block CSRs

	RO -

9.24. TDMA scheduler controller register block

The TDMA scheduler controller register block has a header with type 0x0000C050, version 0x00000100, and indicates the location of the scheduler controller in the register space, as well as containing some control, status, and informational registers.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C050

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000100

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	Offset

	Offset to scheduler

	RO -

	RBB+0x10

	CH count

	Channel count

	RO -

	RBB+0x14

	CH stride

	Channel stride

	RO -

	RBB+0x18

	Control

	Control

	RW 0x00000000

	RBB+0x1C

	TS count

	TS count

	RW -

See Register blocks for definitions of the standard register block header fields.

	
Offset

	The offset field contains the offset to the start of the scheduler, relative to the start of the current region.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	Offset to scheduler

	RO -

	
Channel count

	The channel count field contains the number of channels.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x10

	Channel count

	RO -

	
Channel stride

	The channel stride field contains the size of the region for each channel.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x14

	Channel stride

	RO -

	
Control

	The control field contains scheduler-related control bits.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x18

	Control

	RW 0x00000000

	
Timeslot count

	The timeslot count register contains the number of time slots supported.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x1C

	Timeslot count

	RO -

9.24.1. TDMA scheduler controller CSRs

Each scheduler control channel has several associated control registers, detailed in this table:

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	Base+0x00

	Enable bits

	Enable bits

	RW -

	Base+N

	Enable bits

	Enable bits

	RW -

	
Enable bits

	The enable bits field contains per-timeslot channel enable bits.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	Base+0x00

	Enable bits

	RW 0x00000000

	Bit

	Function

	0

	Timeslot 0 enable

	N

	Timeslot N enable

9.25. Round-robin scheduler register block

The round-robin scheduler register block has a header with type 0x0000C040, version 0x00000100, and indicates the location of the scheduler in the register space, as well as containing some control, status, and informational registers.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C040

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000100

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	Offset

	Offset to scheduler

	RO -

	RBB+0x10

	CH count

	Channel count

	RO -

	RBB+0x14

	CH stride

	Channel stride

	RO 0x00000004

	RBB+0x18

	Control

	Control

	RW 0x00000000

	RBB+0x1C

	Dest

	Dest

	RW -

See Register blocks for definitions of the standard register block header fields.

	
Offset

	The offset field contains the offset to the start of the scheduler, relative to the start of the current region.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	Offset to scheduler

	RO -

	
Channel count

	The channel count field contains the number of channels.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x10

	Channel count

	RO -

	
Channel stride

	The channel stride field contains the size of the region for each channel.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x14

	Channel stride

	RO 0x00000004

	
Control

	The control field contains scheduler-related control bits.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x18

	Control

	RW 0x00000000

	Bit

	Function

	0

	Enable

	
Dest

	The dest field controls the destination port and traffic class of the scheduler. It is initialized with the scheduler’s index with traffic class 0.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x1C

	Dest

	RW -

9.25.1. Round-robin scheduler CSRs

Each scheduler channel has several associated control registers, detailed in this table:

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	Base+0x00

	Control

	Control

	RW 0x00000000

	
Control

	The control field contains scheduler-related control bits.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	Base+0x00

	Control

	RW 0x00000000

	Bit

	Function

	0

	Enable

	1

	Global enable

	2

	Control enable

	16

	Active

	24

	Scheduled

9.26. TDMA scheduler register block

The TDMA scheduler register block has a header with type 0x0000C060, version 0x00000100, and carries several control registers for the TDMA scheduler module.

	Address

	Field

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x00

	Type

	Vendor ID

	Type

	RO 0x0000C060

	RBB+0x04

	Version

	Major

	Minor

	Patch

	Meta

	RO 0x00000100

	RBB+0x08

	Next pointer

	Pointer to next register block

	RO -

	RBB+0x0C

	TS count

	Timeslot count

	RO -

	RBB+0x10

	Control

	Control

	RW -

	RBB+0x14

	Status

	Status

	RO -

	RBB+0x20

	Sch start

	Sch start time (fractional ns)

	RW -

	RBB+0x24

	Sch start

	Sch start time (ns)

	RW -

	RBB+0x28

	Sch start

	Sch start time (sec, lower 32)

	RW -

	RBB+0x2C

	Sch start

	Sch start time (sec, upper 32)

	RW -

	RBB+0x30

	Sch period

	Sch period (fractional ns)

	RW -

	RBB+0x34

	Sch period

	Sch period (ns)

	RW -

	RBB+0x38

	Sch period

	Sch period (sec, lower 32)

	RW -

	RBB+0x3C

	Sch period

	Sch period (sec, upper 32)

	RW -

	RBB+0x40

	TS period

	TS period (fractional ns)

	RW -

	RBB+0x44

	TS period

	TS period (ns)

	RW -

	RBB+0x48

	TS period

	TS period (sec, lower 32)

	RW -

	RBB+0x4C

	TS period

	TS period (sec, upper 32)

	RW -

	RBB+0x50

	Active period

	Active period (fractional ns)

	RW -

	RBB+0x54

	Active period

	Active period (ns)

	RW -

	RBB+0x58

	Active period

	Active period (sec, lower 32)

	RW -

	RBB+0x5C

	Active period

	Active period (sec, upper 32)

	RW -

See Register blocks for definitions of the standard register block header fields.

	
Timeslot count

	The timeslot count register contains the number of time slots supported.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x0C

	Timeslot count

	RO -

	
Control

	The control register contains several control bits relating to the operation of the TDMA scheduler module.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x10

	Control

	RW -

	Bit

	Function

	0

	Enable

	
Status

	The control register contains several status bits relating to the operation of the TDMA scheduler module.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x14

	Status

	RO -

	Bit

	Function

	0

	Locked

	1

	Error

	
Schedule start time

	The schedule start time registers determine the absolute start time for the schedule, with all values latched coincident with writing the upper 32 bits of the seconds field.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x20

	Sch start time (fractional ns)

	RW -

	RBB+0x24

	Sch start time (ns)

	RW -

	RBB+0x28

	Sch start time (sec, lower 32)

	RW -

	RBB+0x2C

	Sch start time (sec, upper 32)

	RW -

	
Schedule period

	The schedule period registers control the period of the schedule, with all values latched coincident with writing the upper 32 bits of the seconds field.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x30

	Sch period (fractional ns)

	RW -

	RBB+0x34

	Sch period (ns)

	RW -

	RBB+0x38

	Sch period (sec, lower 32)

	RW -

	RBB+0x3C

	Sch period (sec, upper 32)

	RW -

	
Timeslot period

	The timeslot period registers control the period of each time slot, with all values latched coincident with writing the upper 32 bits of the seconds field.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x40

	TS period (fractional ns)

	RW -

	RBB+0x44

	TS period (ns)

	RW -

	RBB+0x48

	TS period (sec, lower 32)

	RW -

	RBB+0x4C

	TS period (sec, upper 32)

	RW -

	
Active period

	The active period registers control the active period of each time slot, with all values latched coincident with writing the upper 32 bits of the seconds field.

	Address

	31..24

	23..16

	15..8

	7..0

	Reset value

	RBB+0x50

	Active period (fractional ns)

	RW -

	RBB+0x54

	Active period (ns)

	RW -

	RBB+0x58

	Active period (sec, lower 32)

	RW -

	RBB+0x5C

	Active period (sec, upper 32)

	RW -

9.26.1. TDMA timing parameters

The TDMA schedule is defined by several parameters - the schedule start time, schedule period, timeslot period, and timeslot active period. This figure depicts the relationship between these parameters:

 schedule
 start
 |
 V
 |<-------- schedule period -------->|
-----+--------+--------+--------+--------+--------+---
 | SLOT 0 | SLOT 1 | SLOT 2 | SLOT 3 | SLOT 0 |
-----+--------+--------+--------+--------+--------+---
 |<------>|
 timeslot
 period

 |<-------- timeslot period -------->|
-----+-----------------------------------+------------
 | SLOT 0 | SLOT 1
-----+-----------------------------------+------------
 |<---- active period ----->|

The schedule start time is the absolute start time. Each subsequent schedule will start on a multiple of the schedule period after the start time. Each schedule starts on timeslot 0, and advances to the next timeslot each timeslot period. The timeslot active period is the active period for each timeslot, forming a guard period at the end of the timeslot. It is recommended that the timeslot period divide evenly into the schedule period, but rounding errors will not accumulate as the schedule period takes precedence over the timeslot period. Similarly, the timeslot period takes precedence over the timeslot active period.

10. Device list

This section includes a summary of the various devices supported by Corundum, including a summary of board-specific features.

10.1. PCIe

This section details PCIe form-factor targets, which interface with a separate host system via PCI express as a PCIe endpoint.

Table 10.1 Summary of the various devices supported by Corundum.

	Manufacturer

	Board

	FPGA

	Board ID

	Alpha Data

	ADM-PCIE-9V3

	XCVU3P-2FFVC1517I

	0x41449003

	Dini Group

	DNPCIe_40G_KU_LL_2QSFP

	XCKU040-2FFVA1156E

	0x17df1a00

	Cisco

	Nexus K35-S

	XCKU035-2FBVA676E

	0x1ce40003

	Cisco

	Nexus K3P-S

	XCKU3P-2FFVB676E

	0x1ce40009

	Cisco

	Nexus K3P-Q

	XCKU3P-2FFVB676E

	0x1ce4000a

	Silicom

	fb2CG@KU15P

	XCKU15P-2FFVE1760E

	0x1c2ca00e

	Digilent

	NetFPGA SUME

	XC7V690T-3FFG1761

	0x10ee7028

	BittWare

	XUP-P3R

	XCVU9P-2FLGB2104E

	0x12ba9823

	BittWare

	250-SoC

	XCZU19EG-2FFVD1760E

	0x198a250e

	Intel

	DK-DEV-1SMX-H-A

	1SM21BHU2F53E1VG

	0x11720001

	Intel

	DK-DEV-1SMC-H-A

	1SM21CHU1F53E1VG

	0x11720001

	Intel

	DK-DEV-1SDX-P-A

	1SD280PT2F55E1VG

	0x1172a00d

	Intel

	DK-DEV-AGF014EA

	AGFB014R24B2E2V

	0x1172b00e

	Terasic

	DE10-Agilex

	AGFB014R24B2E2V

	0x1172b00a

	Xilinx

	Alveo U50

	XCU50-2FSVH2104E

	0x10ee9032

	Xilinx

	Alveo U200

	XCU200-2FSGD2104E

	0x10ee90c8

	Xilinx

	Alveo U250

	XCU250-2FIGD2104E

	0x10ee90fa

	Xilinx

	Alveo U280

	XCU280-L2FSVH2892E

	0x10ee9118

	Xilinx

	VCU108

	XCVU095-2FFVA2104E

	0x10ee806c

	Xilinx

	VCU118

	XCVU9P-L2FLGA2104E

	0x10ee9076

	Xilinx

	VCU1525

	XCVU9P-L2FSGD2014E

	0x10ee95f5

	Xilinx

	ZCU106

	XCZU7EV-2FFVC1156E

	0x10ee906a

Table 10.2 Summary of available interfaces and on-board memory.

	Board

	PCIe IF

	Network IF

	DDR

	HBM

	ADM-PCIE-9V3

	Gen 3 x16

	2x QSFP28

	16 GB DDR4 2400 (2x 1G x72)

	-

	DNPCIe_40G_KU_LL_2QSFP

	Gen 3 x8

	2x QSFP+

	4 GB DDR4 2400 (512M x72)

	-

	Nexus K35-S

	Gen 3 x8

	2x SFP+

	-

	-

	Nexus K3P-S

	Gen 3 x8

	2x SFP28

	4 GB DDR4 (1G x32)

	-

	Nexus K3P-Q

	Gen 3 x8

	2x QSFP28

	8 GB DDR4 (1G x72)

	-

	fb2CG@KU15P

	Gen 3 x16

	2x QSFP28

	16 GB DDR4 2666 (4x 512M x72)

	-

	NetFPGA SUME

	Gen 3 x8

	4x SFP+

	8 GB DDR3 1866 (2x 512M x64)

	-

	250-SoC

	Gen 3 x16

	2x QSFP28

	4 GB DDR4 2666 (512M x72)

	-

	XUP-P3R

	Gen 3 x16

	4x QSFP28

	4x DDR4 2400 DIMM (4x x72)

	-

	DK-DEV-1SMX-H-A

	Gen 3 x16

	2x QSFP28

	8 GB DDR4 2666 (2x 512M x72)

	8 GB

	DK-DEV-1SMC-H-A

	Gen 3 x16

	2x QSFP28

	8 GB DDR4 2666 (2x 512M x72)

	16 GB

	DK-DEV-1SDX-P-A

	Gen 4 x16

	2x QSFP28

	2x 4GB DDR4 512M x72, 2x DIMM

	-

	DK-DEV-AGF014EA

	Gen 4 x16

	2x QSFP-DD

	4x 8GB DDR4 3200 DIMM (4x 72)

	-

	DE10-Agilex

	Gen 4 x16

	2x QSFP-DD

	4x 8GB DDR4 3200 DIMM (4x 72)

	-

	Alveo U50

	Gen 3 x16

	1x QSFP28

	-

	8 GB

	Alveo U200

	Gen 3 x16

	2x QSFP28

	64 GB DDR4 2400 (4x 2G x72)

	-

	Alveo U250

	Gen 3 x16

	2x QSFP28

	64 GB DDR4 2400 (4x 2G x72)

	-

	Alveo U280

	Gen 3 x16

	2x QSFP28

	32 GB DDR4 2400 (2x 2G x72)

	8 GB

	VCU108

	Gen 3 x8

	1x QSFP28

	4 GB DDR4 2400 (2x 256M x80)

	-

	VCU118

	Gen 3 x16

	2x QSFP28

	4 GB DDR4 2666 (2x 256M x80)

	-

	VCU1525

	Gen 3 x16

	2x QSFP28

	64 GB DDR4 2400 (4x 2G x72)

	-

	ZCU106

	Gen 3 x4

	2x SFP+

	2 GB DDR4 2400 (256M x64)

	-

Table 10.3 Summary of support for various ancillary features.

	Board

	I2C 1

	MAC 2

	FW update

	ADM-PCIE-9V3

	Y

	Y 5

	Y

	DNPCIe_40G_KU_LL_2QSFP

	Y

	N 3

	Y

	Nexus K35-S

	Y

	Y

	Y

	Nexus K3P-S

	Y

	Y

	Y

	Nexus K3P-Q

	Y

	Y

	Y

	fb2CG@KU15P

	Y

	Y

	Y

	NetFPGA SUME

	Y

	N 7

	N 8

	250-SoC

	Y

	N

	N 9

	XUP-P3R

	Y

	Y

	Y

	DK-DEV-1SMX-H-A

	Y

	N 7

	N

	DK-DEV-1SMC-H-A

	Y

	N 7

	N

	DK-DEV-1SDX-P-A

	Y

	N 3

	N 10

	DK-DEV-AGF014EA

	Y

	N 3

	N

	DE10-Agilex

	Y

	N 7

	N 10

	Alveo U50

	N 4

	Y

	Y

	Alveo U200

	Y

	Y

	Y

	Alveo U250

	Y

	Y

	Y

	Alveo U280

	N 4

	Y

	Y

	VCU108

	Y

	Y 5

	Y

	VCU118

	Y

	Y 5

	Y

	VCU1525

	Y

	Y 5

	Y

	ZCU106

	Y

	Y 5

	N 9

	1 I2C access to optical modules

	2 Persistent MAC address storage

	3 Supported in hardware, driver support in progress

	4 Limited read/write access via BMC pending driver support, full read/write access requires support in BMC firmware

	5 Can read MAC from I2C EEPROM, but EEPROM is blank from factory

	6 MAC available from BMC, but accessing BMC is not yet implemented

	7 No on-board EEPROM

	8 Flash sits behind board management controller, not currently exposed via PCIe

	9 Flash sits behind Zynq SoC, not currently exposed via PCIe

	10 Flash sits behind board management controller, inaccessible

Table 10.4 Summary of the board-specific design variants and some important configuration parameters.

	Board

	Design

	IFxP

	RXQ/TXQ

	MAC

	PTP

	Sched

	ADM-PCIE-9V3

	mqnic/fpga_25g/fpga

	2x1

	256/8K

	25G

	Y

	RR

	ADM-PCIE-9V3

	mqnic/fpga_25g/fpga_10g

	2x1

	256/8K

	10G

	Y

	RR

	ADM-PCIE-9V3

	mqnic/fpga_25g/fpga_tdma

	2x1

	256/256

	25G

	Y

	TDMA

	ADM-PCIE-9V3

	mqnic/fpga_100g/fpga

	2x1

	256/8K

	100G

	Y

	RR

	ADM-PCIE-9V3

	mqnic/fpga_100g/fpga_tdma

	2x1

	256/256

	100G

	Y

	TDMA

	DNPCIe_40G_KU_LL_2QSFP

	mqnic/fpga/fpga_ku040

	2x1

	256/2K

	10G

	Y

	RR

	DNPCIe_40G_KU_LL_2QSFP

	mqnic/fpga/fpga_ku060

	2x1

	256/2K

	10G

	Y

	RR

	Nexus K35-S

	mqnic/fpga/fpga

	2x1

	256/2K

	10G

	Y

	RR

	Nexus K3P-S

	mqnic/fpga_25g/fpga

	2x1

	256/8K

	25G

	Y

	RR

	Nexus K3P-S

	mqnic/fpga_25g/fpga_10g

	2x1

	256/8K

	10G

	Y

	RR

	Nexus K3P-Q

	mqnic/fpga_25g/fpga

	2x1

	256/8K

	25G

	Y

	RR

	Nexus K3P-Q

	mqnic/fpga_25g/fpga_10g

	2x1

	256/8K

	10G

	Y

	RR

	fb2CG@KU15P

	mqnic/fpga_25g/fpga

	2x1

	256/8K

	25G

	Y

	RR

	fb2CG@KU15P

	mqnic/fpga_25g/fpga_10g

	2x1

	256/8K

	10G

	Y

	RR

	fb2CG@KU15P

	mqnic/fpga_25g/fpga_tdma

	2x1

	256/256

	25G

	Y

	TDMA

	fb2CG@KU15P

	mqnic/fpga_100g/fpga

	2x1

	256/8K

	100G

	Y

	RR

	fb2CG@KU15P

	mqnic/fpga_100g/fpga_tdma

	2x1

	256/256

	100G

	Y

	TDMA

	NetFPGA SUME

	mqnic/fpga/fpga

	1x1

	256/512

	10G

	Y

	RR

	250-SoC

	mqnic/fpga_25g/fpga

	2x1

	256/8K

	25G

	Y

	RR

	250-SoC

	mqnic/fpga_25g/fpga_10g

	2x1

	256/8K

	10G

	Y

	RR

	250-SoC

	mqnic/fpga_100g/fpga

	2x1

	256/8K

	100G

	Y

	RR

	XUP-P3R

	mqnic/fpga_25g/fpga

	4x1

	256/8K

	25G

	Y

	RR

	XUP-P3R

	mqnic/fpga_25g/fpga_10g

	4x1

	256/8K

	10G

	Y

	RR

	XUP-P3R

	mqnic/fpga_100g/fpga

	4x1

	256/8K

	100G

	Y

	RR

	DK-DEV-1SMX-H-A

	mqnic/fpga_25g/fpga_1sm21b

	2x1

	256/1K

	25G

	Y

	RR

	DK-DEV-1SMC-H-A

	mqnic/fpga_25g/fpga_1sm21c

	2x1

	256/1K

	25G

	Y

	RR

	DK-DEV-1SMX-H-A

	mqnic/fpga_25g/fpga_10g_1sm21b

	2x1

	256/1K

	10G

	Y

	RR

	DK-DEV-1SMC-H-A

	mqnic/fpga_25g/fpga_10g_1sm21c

	2x1

	256/1K

	10G

	Y

	RR

	DK-DEV-1SDX-P-A

	mqnic/fpga_25g/fpga

	2x1

	256/1K

	25G

	Y

	RR

	DK-DEV-1SDX-P-A

	mqnic/fpga_25g/fpga_10g

	2x1

	256/1K

	10G

	Y

	RR

	DK-DEV-1SDX-P-A

	mqnic/fpga_100g/fpga

	2x1

	256/1K

	100G

	N

	RR

	DK-DEV-AGF014EA

	mqnic/fpga_25g/fpga

	2x1

	256/1K

	25G

	Y

	RR

	DK-DEV-AGF014EA

	mqnic/fpga_25g/fpga_10g

	2x1

	256/1K

	10G

	Y

	RR

	DK-DEV-AGF014EA

	mqnic/fpga_100g/fpga

	2x1

	256/1K

	100G

	N

	RR

	DE10-Agilex

	mqnic/fpga_25g/fpga

	2x1

	256/1K

	25G

	Y

	RR

	DE10-Agilex

	mqnic/fpga_25g/fpga_10g

	2x1

	256/1K

	10G

	Y

	RR

	DE10-Agilex

	mqnic/fpga_100g/fpga

	2x1

	256/1K

	100G

	N

	RR

	Alveo U50

	mqnic/fpga_25g/fpga

	1x1

	256/8K

	25G

	Y

	RR

	Alveo U50

	mqnic/fpga_25g/fpga_10g

	1x1

	256/8K

	10G

	Y

	RR

	Alveo U50

	mqnic/fpga_100g/fpga

	1x1

	256/8K

	100G

	Y

	RR

	Alveo U200

	mqnic/fpga_25g/fpga

	2x1

	256/8K

	25G

	Y

	RR

	Alveo U200

	mqnic/fpga_25g/fpga_10g

	2x1

	256/8K

	10G

	Y

	RR

	Alveo U200

	mqnic/fpga_100g/fpga

	2x1

	256/8K

	100G

	Y

	RR

	Alveo U250

	mqnic/fpga_25g/fpga

	2x1

	256/8K

	25G

	Y

	RR

	Alveo U250

	mqnic/fpga_25g/fpga_10g

	2x1

	256/8K

	10G

	Y

	RR

	Alveo U250

	mqnic/fpga_100g/fpga

	2x1

	256/8K

	100G

	Y

	RR

	Alveo U280

	mqnic/fpga_25g/fpga

	2x1

	256/8K

	25G

	Y

	RR

	Alveo U280

	mqnic/fpga_25g/fpga_10g

	2x1

	256/8K

	10G

	Y

	RR

	Alveo U280

	mqnic/fpga_100g/fpga

	2x1

	256/8K

	100G

	Y

	RR

	VCU108

	mqnic/fpga_25g/fpga

	1x1

	256/2K

	25G

	Y

	RR

	VCU108

	mqnic/fpga_25g/fpga_10g

	1x1

	256/2K

	10G

	Y

	RR

	VCU118

	mqnic/fpga_25g/fpga

	2x1

	256/8K

	25G

	Y

	RR

	VCU118

	mqnic/fpga_25g/fpga_10g

	2x1

	256/8K

	10G

	Y

	RR

	VCU118

	mqnic/fpga_100g/fpga

	2x1

	256/8K

	100G

	Y

	RR

	VCU1525

	mqnic/fpga_25g/fpga

	2x1

	256/8K

	25G

	Y

	RR

	VCU1525

	mqnic/fpga_25g/fpga_10g

	2x1

	256/8K

	10G

	Y

	RR

	VCU1525

	mqnic/fpga_100g/fpga

	2x1

	256/8K

	100G

	Y

	RR

	ZCU106

	mqnic/fpga_pcie/fpga

	2x1

	256/8K

	10G

	Y

	RR

10.2. SoC

This section details SoC targets, which interface with CPU cores on the same device, usually via AXI.

Table 10.5 Summary of the various devices supported by Corundum.

	Manufacturer

	Board

	FPGA

	Board ID

	Xilinx

	KR260

	XCK26-2SFVC784C

	0x10ee9104

	Xilinx

	ZCU102

	XCZU9EG-2FFVB1156E

	0x10ee9066

	Xilinx

	ZCU106

	XCZU7EV-2FFVC1156E

	0x10ee906a

Table 10.6 Summary of available interfaces and on-board memory.

	Board

	PCIe IF

	Network IF

	DDR

	HBM

	KR260

	-

	1x SFP+

	-

	-

	ZCU102

	-

	4x SFP+

	512 MB DDR4 2400 (256M x16)

	-

	ZCU106

	Gen 3 x4

	2x SFP+

	2 GB DDR4 2400 (256M x64)

	-

Table 10.7 Summary of support for various ancillary features.

	Board

	I2C 1

	MAC 2

	FW update

	KR260

	N

	N

	N

	ZCU102

	Y

	Y 3

	N

	ZCU106

	Y

	Y 3

	N

	1 I2C access to optical modules

	2 Persistent MAC address storage

	3 Can read MAC from I2C EEPROM, but EEPROM is blank from factory

Table 10.8 Summary of the board-specific design variants and some important configuration parameters.

	Board

	Design

	IFxP

	RXQ/TXQ

	MAC

	Sched

	KR260

	mqnic/fpga/fpga

	1x1

	32/32

	10G

	RR

	ZCU102

	mqnic/fpga/fpga

	2x1

	32/32

	10G

	RR

	ZCU106

	mqnic/fpga_zynqmp/fpga

	2x1

	32/32

	10G

	RR

11. Glossary

	AXI
	Advanced eXtensible Interface

	BAR
	Base Address Register

	DMA
	Direct Memory Access

	FPGA
	Field-Programmable Gate Array

	JTAG
	Joint Test Action Group

	MAC
	Media Access Control(ler)

	MSI
	Message-Signaled Interrupt

	NIC
	Network Interface Controller

	PCI
	Peripheral Component Interconnect

	PCIe
	PCI Express

	PHY
	PHYsical layer (interface)

	PTP
	Precision Time Protocol (IEEE 1588)

	RSS
	Receive Side Scaling

Index

 A
 | B
 | D
 | F
 | J
 | M
 | N
 | P
 | R

A

 	
 	AXI

B

 	
 	BAR

D

 	
 	DMA

F

 	
 	FPGA

J

 	
 	JTAG

M

 	
 	MAC

 	
 	MSI

N

 	
 	NIC

P

 	
 	PCI

 	PCIe

 	
 	PHY

 	PTP

R

 	
 	RSS

 _static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Contents

 		
 Introduction

 		
 Publications

 		
 Citation

 		
 Indices and tables

 		
 Getting Started

 		
 Join the Corundum community

 		
 Obtaining the source code

 		
 Setting up the FPGA development environment

 		
 Running tests

 		
 Setting up the FPGA build environment (Vivado)

 		
 Building the FPGA configuration

 		
 Building the driver

 		
 Building the userspace tools

 		
 Setting up the PetaLinux build environment

 		
 Loading the FPGA design

 		
 Loading the kernel module

 		
 Testing the design

 		
 Debugging

 		
 The server rebooted when configuring the FPGA

 		
 The link is down

 		
 Ping and iperf don’t work

 		
 The device loses its IP address

 		
 Performance Tuning

 		
 Porting

 		
 Preparation

 		
 Porting Corundum

 		
 Board ID

 		
 FPGA ID

 		
 PCIe interface

 		
 Ethernet interfaces

 		
 I2C interfaces

 		
 Flash access

 		
 Module control pins

 		
 Persistent MAC Addresses

 		
 Programming I2C EEPROM via kernel module

 		
 Operations

 		
 Packet transmission

 		
 Packet reception

 		
 Modules

 		
 Overview

 		
 High-level overview

 		
 cpl_queue_manager

 		
 cpl_write

 		
 desc_fetch

 		
 mqnic_app_block

 		
 Parameters

 		
 Ports

 		
 mqnic_core

 		
 Parameters

 		
 Ports

 		
 mqnic_core_axi

 		
 Parameters

 		
 Ports

 		
 mqnic_core_pcie

 		
 Parameters

 		
 Ports

 		
 mqnic_core_pcie_s10

 		
 Parameters

 		
 Ports

 		
 mqnic_core_pcie_us

 		
 Parameters

 		
 Ports

 		
 mqnic_egress

 		
 mqnic_ingress

 		
 mqnic_interface

 		
 mqnic_interface_rx

 		
 mqnic_interface_tx

 		
 mqnic_l2_egress

 		
 Parameters

 		
 Ports

 		
 mqnic_l2_ingress

 		
 Parameters

 		
 Ports

 		
 mqnic_ptp

 		
 Parameters

 		
 Ports

 		
 mqnic_ptp_clock

 		
 Parameters

 		
 Ports

 		
 mqnic_ptp_perout

 		
 Parameters

 		
 Ports

 		
 mqnic_tx_scheduler_block

 		
 Parameters

 		
 Ports

 		
 queue_manager

 		
 Operation

 		
 rx_checksum

 		
 rx_engine

 		
 rx_hash

 		
 tx_checksum

 		
 tx_engine

 		
 tx_scheduler_rr

 		
 Operation

 		
 Parameters

 		
 Ports

 		
 Register blocks

 		
 App info register block

 		
 Alveo BMC register block

 		
 Gecko BMC register block

 		
 Clock info register block

 		
 Completion queue manager register block

 		
 Completion queue manager CSRs

 		
 Completion queue manager commands

 		
 DRP register block

 		
 Event queue manager register block

 		
 Event queue manager CSRs

 		
 Event queue manager commands

 		
 BPI flash register block

 		
 SPI flash register block

 		
 Firmware ID register block

 		
 GPIO register block

 		
 I2C register block

 		
 Interface register block

 		
 Interface control register block

 		
 Null register block

 		
 PTP hardware clock register block

 		
 PTP period output register block

 		
 Port register block

 		
 Port control register block

 		
 Receive queue manager register block

 		
 Queue manager CSRs

 		
 Queue manager commands

 		
 Transmit queue manager register block

 		
 Queue manager CSRs

 		
 Queue manager commands

 		
 RX queue map register block

 		
 Scheduler block register block

 		
 TDMA scheduler controller register block

 		
 TDMA scheduler controller CSRs

 		
 Round-robin scheduler register block

 		
 Round-robin scheduler CSRs

 		
 TDMA scheduler register block

 		
 TDMA timing parameters

 		
 Device list

 		
 PCIe

 		
 SoC

 		
 Glossary

